CMC Surfaces
Delaunay Surfaces
Roulettes
Bubbletons
Bifurcating Nodoids
Smyth Surfaces
Perturbed Delaunay
CMC Tori
Wente Torus
Exploding Wente
Bending Twizzler
Dobriner Torus
Tight Dobriner
Rattlesnake Tori
CMC Tori 4
CMC Tori 5
CMC Tori 6
CMC Noids
Noids 1
Noids 2
Symmetric Fournoids
Trinoid Bubbletons
Experimental Fournoids
Pseudospherical
Minding Surfaces
Breathers
Minding Breathers
CMC 1 in H3
Binoids
Fournoids
Experimental Noids
Willmore Surfaces
Hopf Tori
Willmore Tori
Constrained
Tori in S3
Embedded Tori
Rectangular Tori
Twizzled Tori
Wente Flow
Equivariant Willmore Tori
Willmore tori in the 3-sphere
These tori were discovered by by Dirk Ferus and Franz Pedit in 1990
[2]
.
3-lobed equivariant Willmore torus
4-lobed equivariant Willmore torus
6-lobed equivariant Willmore torus
12-lobed equivariant Willmore torus
References
Dirk Ferus and Franz Pedit,
S
1
-equivariant minimal tori in S
4
and S
1
-equivariant Willmore tori in S
3
, Math. Z.
204
(1990), no. 2, 269282.
U. Pinkall,
Hopf tori in S
3
, Invent. Math.
81
(1985), no. 2, 379386.