Benutzerspezifische Werkzeuge
:: Universität » Fakultät » Institut :: Startseite Lehre SS 2006 Differentialgeometrie
Artikelaktionen

Differentialgeometrie

Eine Ebene höher

Gegenstand dieses Seminars sind die Theorie der Liegruppen und der Homogenen Räume.

Eine Liegruppe ist eine differenzierbare Mannigfaltigkeit, die zudem eine Gruppenstruktur hat, so dass die Gruppenoperationen differenzierbare Abbildungen sind. Liegruppen tauchen in natürlicher Weise als Symmetriegruppen von geometrischen, algebraischen, auch analytischen Strukturen auf, z.B. die allgemeine lineare Gruppe eines endlich-dimensionalen, reellen Vektorraums oder die orthogonale Gruppe eines endlich-dimensionalen euklidschen Vektorraums. Homogene Räume sind Quotienten von Liegruppen nach abgeschlossenen Untergruppen und tragen weiterhin eine natürliche Mannigfaltigkeitsstruktur. Sie erweitern das Beispielmaterial von den bekannten differenzierbaren Mannigfaltigkeiten wie den Sphären, projektiven Räumen oder den Tori.

Dieses Seminars versteht sich als ein Teil meines Hauptstudiumskurses in Differentialgeometrie und wendet sich daher im Besonderen an meine Hörer aus der Vorlesung "Differentialgeometrie I". Bei guten Kenntnissen über differenzierbare Mannigfaltigkeiten kann man aber auch ohne der Teilnahme an dieser Vorlesung erfolgreich an diesem Seminar teilnehmen.

Literaturangaben

F. Warner: Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, Heidelberg

Differentialgeometrie
Seminar
Dozenten
Stundenplan
Do 14:15-16:00 S10
Start: 24.04.2006
Ende: 28.07.2006
Literatur
Vorträge
G. Marcolini
27.04.2006 14:15, S10
A.-C. Ungänz
A. Erhard
04.05.2006 14:15, S10
A.-C. Ungänz
A. Erhard
11.05.2006 14:15, S10
Ch. Krüger
18.05.2006 14:15, S10
J. Schlecht
01.06.2006 14:15, S10
I. Weindl
22.06.2006 14:15, S10
Ph. Bader
29.06.2006 14:15, S10
N. N.
06.07.2006 14:15, S10
E. Herppich
13.07.2006 14:15, S10
20.07.2006 14:15, S10
27.07.2006 14:15, S10
 

Powered by Plone CMS, the Open Source Content Management System

Diese Website erfüllt die folgenden Standards: