The Shannon-McMillan theorem (AEP) for quantum sources and related topics

I.Bjelakovic, T.K., A. Szkola, R.Siegmund-Schultze

Motivation

• Transfer of fundamental theorems of classical information theory to quantum information theory

• In a wider context: how a quantum ergodic theory and quantum dynamical system theory looks like

The classical Shannon-McMillan-(Breiman) theorem

- Given (Σ, μ, σ) , Σ sequence space over finite alphabet, μ ergodic measure, σ shift-transformation, $\Sigma \propto x$, $x(n) = (x_1, x_2, x_3, ..., x_n)$
- a.s. for ergodic μ : the individual information rate equals the average information rate

$$\lim_{n\to\infty} \frac{-\log\mu(x(n))}{n} = h_{\mu} \qquad \left(= \lim_{n\to\infty} \frac{-1}{n} \sum_{w\in\Sigma^{(n)}} \mu(w) \log\mu(w) \right)$$

• This is a law of large numbers under very mild assumptions

Typical subspaces and data compression

Reformulation in terms of typical subspaces:

there is a family of typical sets $\left\{T_n \subset \Sigma^{(n)}\right\}$ s.t. $T_{n+1}\left(n\right) \supset T_n$ (filtration property) and $\mu\left(T_n\right) \to 1$ and $\frac{1}{n}\log \#T_n \to h_\mu$ and $\forall \epsilon > 0$ one has: $\mu\left(w \in T_n\right) \leq e^{-n\left(h_\mu - \epsilon\right)}$ for $n > n_0\left(\epsilon\right)$

furthermore for any family $\{B_n\}$ s.t.

$$\limsup_{n} \frac{1}{n} \log(\#B_n) < h_{\mu} \text{ it follows that}$$

$$\mu(B_n) \rightarrow 0$$
 (strong converse)

in other words: to cover a positive fraction of the whole space one needs asymptotically

e^{nh}_µ cylinder-sets of lengt n

Application to data compression:

given a typical long symbol sequence $(x_1, x_2, \dots, x_n) \in \{0,1\}^n$

Codebook: typical words of length k,
$$k < \frac{1}{h_{\mu}} \log_2 n$$

there are about $2^{kh_{\mu}}$ typical words \Rightarrow Codebooksize \square n and kh_{μ} bits needed to specify a word from the codebook

(only o(n) fraction of blocks does not belong to the codebook)

$$\Rightarrow \frac{n}{k} \cdot kh_{\mu} = nh_{\mu}$$
 bits needed to code the whole sequence ($h_{\mu} \in [0,1]$)

The quantum setting

A: matrix-algebra over Hilbert space $H=\square^{\kappa}$ (C*-algebra)

 A_x : copy of A at site x

$$A^{\infty}$$
 = norm-closure of $\bigcup_{n} \left\{ A^{n} := \bigotimes_{x \in \{1,2,...,n\}} A_{x} \right\}$

σ: shift transformation

 ϕ : positive, normed, linear functional on A^{∞} (measure)

 φ invariant: $\varphi = \varphi \circ \sigma$

φ ergodic: φ is extremal among the invariant functionals

for $\varphi_n := \varphi \Big|_{A^n}$ there is a density matrix D_n s.t. $\varphi(a) = tr(D_n a)$ and $D_n = tr_{n+1}D_{n+1}$ (consistency) (tr_{n+1} partial trace with respect to site n+1)

entropy: $S(\phi_n) = -tr(D_n \log D_n)$ (von Neumann)

entropy rate:
$$s(\varphi) = \lim_{n \to \infty} \frac{1}{n} S(\varphi_n)$$

covering exponent: $\beta(\epsilon)$:

 $\lim_{n\to\infty} \frac{1}{n} \min \left\{ \log \operatorname{tr} P : P \text{ projector from } A^n \text{ s.t. } \phi(P) > 1 - \varepsilon \right\}$

The quantum Shannon-McMillan theorem

(Ref.: Inventiones Mathematica, 2003)

Let φ be an ergodic state on $A^{\infty} \Rightarrow$

 \exists family of orthogonal projectors $\{Q_n \in A^n\}$ s.t.:

i)
$$\varphi(Q_n) \to 1$$
 and $\lim_{n \to \infty} \frac{1}{n} \log tr(Q_n) = s(\varphi)$

ii) for any sequence of minimal projectors $\{p_n < Q_n\} \Rightarrow$

$$\frac{-1}{n}\log\varphi(p_n) \rightarrow s(\varphi)$$

iii) for any sequence of projectors $\{Q'_n \in A^n\}$ s.t.

$$\lim_{n\to\infty}\frac{1}{n}\log\operatorname{tr}(Q'_n) < s(\varphi) \Longrightarrow \varphi(Q'_n) \to 0$$

Comments

- The theorem holds for \square^{\vee} lattices as well
- Covering exponent is for all $\varepsilon > 0$: $\beta(\varepsilon) = s(\phi)$
- The typical projectors (subspaces) can be explicitly constructed from the eigenspaces of D_n corresponding to eigenvalues of order $e^{-ns(\phi)}$
- The relation between the typical subspaces for different n is still unclear
- Extensions to other group actions are possible
- The typical subspaces can be chosen to be universal (not depending on φ but only on s(φ)) due to a result by Kalchenkov

History

- Josza&Schumacher: typical subspace theorem for product states (Bernoulli case, 1996)
- Petz&Mosonyi: weak version of the Shannon-McMillan under the assumption of complete ergodicity (2001) and strong form for Gibbs states (with Hiai, 1993)
- Neshveyev&Størmer: Shannon-McMillan for finitely generated C*-algebras but only tracial states (2002)
- Datta&Shuchov: Shannon-McMillan for spin lattices with restrictions on the interaction (2002)

Extensions

A pointwise variant (Shannon-McMillan-Breiman):

Let φ be an ergodic state on $A^{\infty} \Rightarrow$

 $\forall \varepsilon > 0 \ \exists \text{ family of orthogonal projectors } \left\{ Q_{n,\varepsilon} \in A^n \right\} \text{ s.t. for } n > n(\varepsilon)$:

i)
$$\varphi(Q_{n,\epsilon}) > 1 - \epsilon$$
 and $\lim_{n \to \infty} \frac{1}{n} \log tr(Q_{n,\epsilon}) < s(\varphi) + \epsilon$

ii) for any sequence of minimal projectors $\{p_n < Q_{n,\epsilon}\} \Rightarrow$

$$\frac{-1}{n}\log\varphi(p_n) < s(\varphi) - \varepsilon$$

iii) $R[tr_{n+1}(Q_{n+1,\epsilon})] = Q_{n,\epsilon}$ (here R[.] is the range projector)

- The relation between the typical projectors for different ε is unclear
- For abelian algebras (classical case) the above theorem is equivalent to the Shannon-McMillan-Breiman theorem

A theorem for the relative entropy (I.Bjelakovich, R.Siegmund-Schultze)

Relative entropy of two states ω and τ on finite dimensional algebra:

$$S(\omega, \tau) := \begin{cases} tr(D_{\omega}(\log D_{\omega} - \log D_{\tau})) & \text{for supp} \omega \leq \text{supp} \tau \\ & \infty & \text{otherwise} \end{cases}$$

Relative entropy rate:

 ψ an invariant state and ϕ an invariant product state on A^{∞}

$$s(\psi,\varphi) = \lim_{n \to \infty} \frac{1}{n} S(\psi_n, \varphi_n) \quad (\varphi_n := \varphi|_{A^n})$$

Relative exponent:

$$\beta_{\varepsilon,n}(\psi,\varphi) := \min\{\log \varphi_n(Q) : Q \in A^n, \text{ projector s.t. } \psi_n(Q) > 1 - \varepsilon\}$$

For ψ an ergodic state and φ an invariant product state on $A^{\infty} \Rightarrow$

$$\lim_{n\to\infty}\frac{1}{n}\beta_{\epsilon,n}\left(\psi,\varphi\right)=s\left(\psi,\varphi\right) \text{ for } \forall \epsilon>0$$

equivalently for typical subspace projectors $\{Q_n\}$ of $\psi \Rightarrow$

$$e^{-n(s(\psi,\phi)+\varepsilon)} \le \phi(Q_n) \le e^{-n(s(\psi,\phi)-\varepsilon)} ; n > n(\varepsilon)$$

Relative entropy typical and untypical subspaces

From ψ point of view:

$$\psi(Q_n) > 1 - \varepsilon$$

From φ point of view:

$$\phi(Q_n)\Box e^{-ns(\psi,\phi)}$$

- Complete analogy to the classical case
- The proof is similar to the one for the Shannon-McMillan theorem but more technical involved
- New simple proof of the monotonicity of the relative entropy can be derived from this result
- Starting point for developing a large deviation theory (Sanov's theorem)

Proof strategy

Idea: want to use abelian approximations to lift the classical results to the quantum case

Natural candidate:

algebra B_n generated by the eigenspace projectors of D_n (density matrix corresponding to $\phi_n := \phi \Big|_{\{1,..,n\}}$)

$$\underbrace{A \otimes A \otimes \ldots \otimes A}_{B_n \subset A^n} \otimes \underbrace{A \otimes A \otimes \ldots \otimes A}_{\otimes} \otimes \underbrace{A \otimes A \otimes \ldots \otimes A}_{\otimes} \otimes \ldots \otimes \underbrace{A \otimes A \otimes \ldots \otimes A}_{B_n \subset A^n} \otimes \underbrace{A \otimes A \otimes \ldots \otimes A}_{B_n \subset A^n}$$

 $\left(B_n^{\infty}, \phi^{(B)}, \sigma^*\right)$ is an abelian system

 σ^* corresponds to σ^n on A^{∞}

 $\left(B_n^{\infty},\phi^{(B)},\sigma^*\right)$ is isomorphic to a classical system $\left(\Sigma_{B_n},\mu,\sigma\right)$

$$s(\varphi) \le \frac{1}{n} s(\varphi^{(B)} | \sigma^*) = \frac{1}{n} h_{\mu} \le s(\varphi) + \varepsilon(n)$$

What can be said about the ergodic properties of $\left(\Sigma_{B_n}, \mu, \sigma\right)$? μ is ergodic under the assumption of complete ergodicity of ϕ (Petz)

In the general case μ splits into at most k n ergodic components. All components are isomorphic under some shift-power and have the same entropy. To prove this one needs an ergodic decomposition theorem for $\left(A^{\infty},\phi,\sigma^{n}\right)$:

i)
$$\left(A^{\infty}, \phi, \sigma^{n}\right)$$
 splits into $1 \le k \le n$ ergodic components $\left\{\phi^{(i)}\right\}_{1 \le i \le k}$

ii)
$$k \mid n$$
 and $\varphi^{(i)} = \varphi^{(i-1)} \circ \sigma$

iii)
$$s(\varphi^{(i)}|\sigma^n) = s(\varphi^{(j)}|\sigma^n) = ns(\varphi)$$

finite size entropy estimation:

iv)
$$\forall \eta > 0$$
 and $n \to \infty \Rightarrow s(\varphi) \le \frac{1}{n} S(\varphi^{(i)}|_{A^n}) \le s(\varphi) + \eta$

for almost every ergodic component

Next step: combining the different levels of approximation

Lemma:

given a sequence of probability measures (μ_n) over finite alphabets (B_n) s.t.

a)
$$\frac{1}{n} \log \# B_n \le C < \infty$$

b)
$$\frac{1}{n}H(\mu_n) \rightarrow h$$

c)
$$\limsup \left(\beta_{\epsilon,n} := \frac{1}{n} \min \left\{ \log \# \Omega : \mu_n \left(\Omega \right) > 1 - \epsilon \right\} \right) \le h \text{ for } \forall \epsilon > 0$$

$$\Rightarrow$$
 for $\forall \varepsilon > 0$

i)
$$\lim_{n\to\infty}\frac{1}{n}\beta_{\epsilon,n}=h$$

ii)
$$\mu_n \left\{ a \in B_n : \mu_n \left(a \right) > e^{-n(h-\epsilon)} \right\} \rightarrow 0$$

iii)
$$\mu_n \left\{ a \in B_n : \mu_n \left(a \right) < e^{-n(h+\epsilon)} \right\} \rightarrow 0$$

take $h = s(\phi)$ and B_n as the index set of the projectors corresponding to the eigenspaces of D_n and apply the results about the ergodic decomposition and mix everything carefully!

For the proof of the relative entropy theorem one needs simultaneous good abelian approximations of the states ψ and φ

A coding application

(I.Bjelakovich, A.Szkoła)

Question:

Is the projection onto the typical subpaces a quantum operation with asumptotic fidelity 1?

A quantum channel is a trace preserving completely positive map from $B(H) \rightarrow B(H')$, H: finite dimensional Hilbertspace Compression scheme $\left\{C^{(n)},D^{(n)}\right\}$ for

stationary quantum source $(A^{\infty}, \phi, \sigma) \cong \{A^n = B(H^{\otimes n}), D_n\}$

$$C^{(n)}: B\!\left(H^{\otimes n}\right) \!\to\! B\!\left(H^{(n)} \subset H^{\otimes n}\right) \quad D^{(n)}: B\!\left(H^{(n)}\right) \!\to\! B\!\left(H^{\otimes n}\right)$$

Fidelity of two density matrices ρ and τ :

$$F(\rho,\tau) = tr\left(\sqrt{\sqrt{\rho} \circ \tau \circ \sqrt{\rho}}\right)$$

(generalizes the overlap $|\langle \psi | \xi \rangle|$ of vectors in a Hilbert space)

$$1 - F(\rho, \tau) \le \frac{1}{2} \operatorname{tr} |\rho - \tau| \le \sqrt{1 - (F(\rho, \tau))^2}$$

Compression rate:

$$R_C := \limsup \frac{\log \dim H^{(n)}}{n}$$

How large is $F(D_n, D^{(n)} \circ C^{(n)} \circ D_n = D_n)$ for given R_C and large n?

Theorem:

i) there is a compression scheme $\left\{C^{(n)},D^{(n)}\right\}$ with

$$R_C = s(\varphi)$$
 s.t. $\lim_{n\to\infty} F(D_n, D_n) = 1$

ii) any scheme with $R_C < s(\varphi)$ satisfies $\lim_{n \to \infty} F(D_n, D_n) = 0$

similar statements hold for stronger versions of fidelity (entanglement fidelity, ensemble fidelity)

Open problems

- Stronger pointwise theorem
- Estimation of entropy
- Universal coding schemes (unknown source)
- Lempel-Ziv type coding
- Rate distortion
- Coding theorems for different channels
- Large deviations, Sanov's theorem
- Isomorphism classes etc. (are q-Bernoulli systems completely classified by the entropy?)