The Shannon-McMillan theorem
(AEP) for guantum sources and
related topics

|.Bjelakovic, T.K., A. Szkola,
R.Siegmund-Schultze



Motivation

e Transfer of fundamental theorems of classical
information theory to qguantum information theory

* |n a wider context. how a quantum ergodic theory
and quantum dynamical system theory looks like



The classical Shannon-McMillan-(Breiman)
theorem

e Given(Z,|1,0), 2 sequence space over finite alphabet,
L ergodic measure; shift-transformation,
Z X, X(N) = (X, X2, X3,..+, Xn)

» a.s. for ergodici: the individual information rate
equals the average information rate

Nn—-oo n

im (=g 5 o oou(w)

e This is a law of large numbers under very mild
assumptions



Typical subspaces and data compression

Reformulation in terms of typical subspaces:

there is a family of typical se{sTn ] Z(”)} S.t.
T...(n) O T, (filtration property) and
u(T,) - 1and

n

lIog#‘l‘n - h, and
n

[le>0onehas:p(wlIT, )< e"" for n> n ()



furthermore for any familyB,} s.t.

imsup log{ #B,)< h, it follows that
n

u(B,) — 0 (strong converge
In otherwords to cover a positive fraction ¢
the whole space one needs asympéy

&' cylindersetsof lengtn



T

n+1

pical subspac —typical subspac

or pu: u(T,)>1-¢,

T,., —typical subsps T .. —typical subspac




Application to dé&a compression:

given a typical long symbol sequengce, x,, .......,x,) [J{ 0,1

Codebod: typical words of lengtlx, k < hi log,n

v
there are abat?" typicalwords= Codebooksize n and
kh,, bits needed to specify a wofbm the codebook
Spitting: Xy Xo oo Xy Kgggooens Xop wrvnvnnnennns Focgper 11X

code with Khy bits code

'

E codewords

(onlyo(n) fracion of blocks does not belong to the codebook)

= E 'kh, =nh, bits needed to code the whole sequeriqléj([o,]] )



he quantum setting

A - matrix-dgebra over Hilbert space='| “ (C*-algebra
A 1 copy of A at site

A" =norm-closure oU{A”:: D{E @AX}

o . shift transformabn

¢ . positive, normed, linear functional én°  (@seire)
¢ Invarian: ¢ =¢oo

¢ ergodic: ¢ I1s extremal among the invamt functionas



.» there is alensity matribO,

st.d(a)=tr(D,a) andD, = t,, D, , (consistency)
(ir ., partialtrace with respect to siter1 )

entrqy: S(¢,)=-tr(D, logD,) (von Neuman )

entropy rate s(¢) = Iim%S((I)n)

covering expaent 3(¢):

Iim%min{log trP : P projecor from A" s.t ¢(P) > 1—8}



The quantum Shannon-McMillan theorem

(Ref.: Inventiones Mathematica, 2003)

Let® be an ergodic state 6n' =

[1family of orthogonal projector%Qn [] A”} S.t..

) $(Q,) - 1andiim%log tr(Q,) = d¢)

Il) for any sequence of minimal project({rm < Qn} =
oot (p,) - (0)

i) for any sequace of projectors{ Q [ A”} S.t.

I|m—Iogtr( )<sdd)=9(Q) -

n—- oo n



Comments

The theorem holds for * - lattices as well
Covering exponent is for atl> 0. 3(g) = s(p)

The typical projectors (subspaces) can be
explicitly constructed from the eigenspace£0of
corresponding to eigenvalues of order<"

The relation between the typical subspaces for
differentn is still unclear

Extensions to other group actions are possible

The typical subspaces can be chosen to be
universal (not depending anbut only ons(op))
due to a result by Kalchenkov



History

Josza&Schumachetypical subspace theorem for
product states (Bernoulli case, 1996)

Petz&Mosonyi weak version of the Shannon-
McMillan under the assumption of complete
ergodicity (2001) and strong form for Gibbs states
(with Hiai, 1993)

Neshveyev&StgrmeiShannon-McMillan for
finitely generated C*-algebras but only tracial
states (2002)

Datta&ShuchoyvShannon-McMillan for spin
lattices with restrictions on the interaction (2pP02




Extensions

A pointwise variant (Sharmon-McMillan-Breman):
Let ® be an ergodic state én' =

_le >0 Ofamily of orthogonal projector{sQnﬁ [] A”} s.t. forn> n):

i)¢(Qn,)>1 eandllm—logtr( ) ) +e

n
Il) for anysequence of minimal projector%pn < Qnﬁ} =

~logé (p,) < S(<I>)-
i) Rtr . (Q.,..)]=Q . (hee R[.] Is therange projector)



* The relation between the typical projectors for
differentc Is unclear

 For abelian algebras (classical case) the above

theorem is equivalent to the Shannon-McMillan-
Breiman theorem



A theorem for the relative entropy
(I.Bjelakovich, R.Siegmund-Schultze

Relative entropyf two stateso and on finite dimensab@algebra

S(oo T) — tr(Dw ('09 D,, —log DT)) for suppgw< supp
o oo otherwise

Relative entropy rat
U an invariant state anid an invariant producesa®

s(wh)= im=S(w, 8,) (6,76 |, )



Relative exponent
B, (W,0):=min{logd, (Q) :Q1 A" ,projector s.tip, ( Q> ¢l

For an ergodic state aiid an invariant produté staA ™ =

Lim%ﬁ&n (w,0) = (W 6) for Ot >0

equivalently for typical subspaceopecors{Q } ofy =
o (s #)+e) <9(Q,)< gltvee) . fe)



Relative entropy typical and untypical

subspaces
From point of view Fromd point of vew
w(Q,)>1-¢ 6(Q,)0 e

4 4




Complete analogy to the classical case

The proof is similar to the one for the Shannon-
McMillan theorem but more technical involved

New simple proof of the monotonicity of the relai
entropy can be derived from this result

Starting point for developing a large deviatioadhy
(Sanov’s theorem)



Proof strategy

ldea want to se abelian approximations to lift the
classical results to the quantum case

Natural @andidae:

algebraB_  generated by the eigenspace projectors

of D, (density matrix corregmding tod, =¢ |, )

AOAD...0A OADOAO....0AD....0AOAD....OA
BHEA” . BHEA” . . BHEA”

B _ B®

(B‘;f,q)(B) ,0*) is an abelian sysie

o corresponds to” of”



(B‘;f,q)(B) ,0*) IS Isomorphic to a classical systﬁ(mBn U ,0)

()<= 670") == h, < 40)+¢( 9

What can be said about teeyodicproperties (chBn ,u,cr) ?
Ll IS ergodic under the assumptioncofnplete ergodicityf ¢of P2X

In the general cage splits into at rrk)\$t ergodic conporents
All components are isomorphic under soshét-power and have
the same entropy. To prove this one needs an & gedmposition

theaemfor (A°°, q),cr”) :



1) (A°°,¢,G”) splits into1< k< n ergodic componel{kjs(‘)}

1<i<k

i) knand ¢ =9 o0

i) s( ) s(cp )— ngo)

finite size entropy estimation:

i oo e 0
v) LIn=>0andn - o= s(cp)sns(q) ‘An)g $0)+

for almost every ergodic cqronern

Next step: combining the different levels of approximation



Lemma :
given a sequence of probability measures)

over finite alphabets3,)  s.t.
a) llog#Bn <C<oo
N

b) —H(h,) -~ h

C) Iimsup(B&n ::%min{log#ﬂ M, (Q)> 1—e}js h forde >0

—



—for [le >0

) lim=p, =h
n-o N ’

i) pn{aD B, :1,(a)> é”(h_s)} -~ 0
i) p,{a0 B, :p,(a)< "I}~ 0
takeh =s(¢) andB, as the index set of the projectors

corresponehg to the eigenspacesiof  and applyresults
aboutthe egodic decomposition and mix everythiogrefully!

For the proof of the relative entropy theorem oaeds
simultaneous good abelian approximatiohthe stated) angl



A coding application
(I.Bjelakovich, A.Szkota)

Question:
Is the projection onto the typical sulgea a quantum operation w
asumptotic fidelity 1?

A quantum chara Is a trace preserving completely go& map
fromB(H) - B(H"),H: finite dimensioal Hilbertspace

Compression seme {C(”), D(”)} for
stationary quantumource(Am, , 0) D{A” =B (H D”), Dn}

¢ :B(H™) — B(HW OH") DO :B(H") - B(H™)



Fidelity of two density matrices arnd

SODELISNCRRNG

(generalizes the overldp|&)  of vectors in kit space)

1-F(p.1)< tip-1]<|1-(Fp 1))’

Compression rate:

log dim H"
n

R. =Ilimsup

How large & F(Dn, DWocWoD, = D'n) for givenR . and legen*



Theorem:

) there is a compressionheme{ c, D(”)} with

R.=4¢) s.t. nliropF( D .Q)=1
i) any scheme withe. < 5(¢)  satisfiesn F( D, ,D, )= 0

similar statements hold for stronger versmf fidelity
(entangémernt fidelity, ensemble fidelity)



Open problems

Stronger pointwise theorem

Estimation of entropy

Universal coding schemes (unknown source)
Lempel-Ziv type coding

Rate distortion

Coding theorems for different channels
Large deviations, Sanov's theorem

Isomorphism classes etc. ( are g-Bernoulli systems
completely classified by the entropy?)



