Thomas Markwig Commutative Algebra
Contact
Research Interests
Curriculum Vitae
Publications
Teaching
Links

Dates:

Seminar: Di and Mi 13:45-15:15, Rm 48-438

Aktuelles:

  1. The seminar consists of 17 talks given by the participants. We, therefore, will have to arrange some extra meetings at the beginning of the term. These will take place on Wednesdays.
  2. Each participant should have studied the Chapters A 2.2-3 and A 3.1-11 in the appendix of David Eisenbud's book.
  3. Each talk should last not more than 90 minutes. Therefore, sometimes the speaker will have to give just main ideas of a proof rather than its details. The talk should illustrate the most important results by illuminating examples.

Contents:

The seminar is a continuation of the lecture commutative algebra last winter term. The contents include: graded rings and modules; regular rings; Auslander-Buchsbaum formula; Hilbert's Syzygy Theorem; Fitting ideals; Theorem of Hilbert-Burch; Castelnuovo-Mumford regularity; duality; Gorenstein rings; maximal Cohen-Macaulay modules.

Literature:

Eisenbud: Commutative Algebra with a View towards Algebraic Geometry.
Gelfand, Manin: Methods of Homological Algebra.
Atiyah, MacDonald Introduction to Commutative Algebra.
Hilton, Stammbach: A Course in Homological Algebra.
Matsumura: Commutative Ring Theory.
Markwig: Some Remarks on the Graded Lemma of Nakayama, PS, PDF.

Here you can download the following table as PS-File, PDF-File.

Talks:

TitleLiteratureSpeakerDate
General Reading
0.Homological Algebra Eisenbud, Kap. A 2.2 \& A 3.1-11alle
Regular Rings, Graded Rings and Modules
1.Regular Rings Eisenbud, Sätze 3.11b, 10.6-9 \& 10.14-15 Klaus Huthmacher26.4.05
2.Graded Modules and Rings Eisenbud, Kap. 1.5, 1.9-10, A 3.2; + MarkwigMarkus Hochstetter27.4.05
Regular Sequences and the Koszul Complex
3.Koszul Complexes Eisenbud, Kap. 17.1-4, p. 423-440Silke Spang3.+4.5.05
Depth, Codimension, and Cohen-Macaulay Rings
4.Depth Eisenbud, Kap. 18.1, p. 451-455Lars Allermann10.5.05
5.Cohen-Macaulay Rings Eisenbud, Kap. 18.2, p. 455-460Mathias Altenhöfer24.5.05
6.Primeness, Flatness and Depth Eisenbud, Kap. 18.3-4, p. 461-466Eckehard Hollborn25.5.05
Homological Theory of Regular Local Rings
7.Projective Dimension Eisenbud, Kap. 19.1-2, p. 473-478Marina Franz1.6.05
8.Auslander-Buchsbaum Formula Eisenbud, Kap. 19.2-3, p. 478 (C.~19.8)-483Thomas Trenner7.6.05
9.Factoriality of Regular Local Rings Eisenbud, Kap. 19.3-4, p. 483 (C.~19.14)-487Tanja Berger14.6.05
Free Resolutions and Fitting Invariants
10.Fitting Ideals Eisenbud, Kap. 20.1-2, p. 489-496Zaenal Aripin15.6.05
11.Hilbert-Burch Theorem Eisenbud, Kap. 20.3-4, p. 496-503Anne Frühbis-Krüger 28.6.05
12.Castelnuovo-Mumford Regularity Eisenbud, Kap. 20.4-5, p. 503-510Christian Dingler5.7.05
Duality, Canonical Modules, and Gorenstein Rings
13.Duality Eisenbud, Kap. 21.1, p. 523-529Andreas Gathmann12.7.05
14.Gorenstein Rings Eisenbud, Kap. 21.2-3, p. 529-533Lesya Bodnarchuk13.7.05
15.Maximal Cohen-Macaulay Modules Eisenbud, Kap. 21.4-6, p. 533-540Markus Barthlen19.7.05
Univ. of TübingenDept. of MathematicsSection AlgebraCAS SINGULAR