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Setting

G = connected, non compact, semisimple Lie group

K ⊂ G maximal compact subgroup
X = G/K associated Riemannian symmetric space
(Γn)n∈N sequence of lattices in G

Mn = Γn \ X associated sequence of locally simmetric spaces
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Overview

Benjamini-Schramm Convergence (geometrical)

Plancherel Convergence (spectral)
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Benjamini-Schramm convergence

Let M = Γ \ X . The injectivity radius at a point p is the
radius of the largest ball in M centered at p which is
isometric to a ball in X .

For R > 0, the R-thin part of M is

S<R =
{
p ∈ X : InjRad(p) < R

}
.
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Benjamini-Schramm convergence

Definition (Benjamini-Schramm convergence)

We say that a sequence (Mn)n∈N of locally symmetric spaces given by Mn = Γn \ X is
Benjamini–Schramm convergent to X if for every R > 0

vol ((Mn)<R)

vol(Mn)
−→ 0, as n → ∞.

Equivalently, (Mn)n∈N is BS-convergent if for any R > 0, the probability of a ball in Mn of
radius R being isometric to a ball in X is asimptotically 1.
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An example

Let Γ ⊂ G be a torsion free cocompact lattice.

Consider a sequence of cocompact lattices

Γ = Γ1 ≥ Γ2 ≥ . . .

such that
1 Γn ◁ Γ ∀ n ∈ N;
2

⋂
n∈N Γn = {e} (trivial intersection).

Such a sequence {Γn}n∈N is called a tower of normal subgroups of Γ.

InjRad(Mn)
n→∞−−−→ ∞ =⇒ the R-thin part of Mn is empty for large enough n =⇒ Mn is

Benjamini-Schramm convergent to X .
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Plancherel convergence

Ĝ = unitary dual of G .

For f ∈ C∞
c (G ) and π ∈ Ĝ ,

π(f ) =

ˆ
G
f (x)π(x)dx : Hπ → Hπ

is a trace class operator.

f̂ : π 7→ tr π(f ) is the (scalar) Fourier transform of f .
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π(f ) =

ˆ
G
f (x)π(x)dx : Hπ → Hπ

is a trace class operator.

f̂ : π 7→ tr π(f ) is the (scalar) Fourier transform of f .

6/25



Plancherel convergence

Γ ⊂ G cocompact lattice.

L2(Γ \ G ) ∼=
⊕
π∈Ĝ

m(π, Γ)Hπ.

Call µΓ :=
∑

π∈Ĝ m(π, Γ)δπ the spectral measure associated to Γ.

For f ∈ C∞
c (G ),

µΓ(f̂ ) =
∑
π∈Ĝ

m(π, Γ)f̂ (π), µPl(f̂ ) :=

ˆ
Ĝ
f̂ (π)dµPl(π) = f (1).
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m(π, Γ)Hπ.

Call µΓ :=
∑

π∈Ĝ m(π, Γ)δπ the spectral measure associated to Γ.

For f ∈ C∞
c (G ),

µΓ(f̂ ) =
∑
π∈Ĝ
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Plancherel convergence

Definition (Plancherel convergence)

A sequence (Γn)n∈N of cocompact lattices in G ,

or equiv. the sequence (Mn)n∈N of associated
locally symmetric spaces, is called a Plancherel sequence if for every f ∈ C∞

c (G )

1
vol(Γn \ G )

µΓn(f̂ ) −→ µPl(f̂ ), as n → ∞.

Let A ⊂ Ĝ be open, pre-compact, µPl -regular.

(Γn)n∈N Plancherel =⇒ 1
vol(Γn \ G )

µΓn(A) −→ µPl(A), as n → ∞,

i.e. (Γn)n∈N has the limit multiplicity property.
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Asymptotics of the Laplace spectrum

G = SL2(R).

(Γn)n∈N sequence of cocompact lattices.

Identify spherical representations of SL2(R) with [0,∞).

For all 0 < a < b < ∞, N(∆,Mn, a, b) = µΓn((a, b)).

The limit multiplicity property translates to:

N(∆,Mn, a, b)

vol(Mn)
n→∞−−−→ µPl((a, b)).
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Geometrical interpretation

Theorem (Deitmar, 2018)

(Mn)n∈N is a Plancherel sequence if and only if for every R > 0

1
vol(Mn)

ˆ
Fn

♯
(
Γ⋆n · x ∩ BR(x)

)
dx

n→∞−−−→ 0.
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Benjamini-Schramm vs Plancherel convergence

Theorem (Deitmar, 2018)

A Plancherel sequence is Benjamini-Schramm convergent.

Definition (Uniform Discreteness)

We call a sequence of locally symmetric spaces (Mn)n∈N uniformly discrete if there is a uniform
lower bound on the injectivity radius of Mn = Γn \ X for n ∈ N.

Theorem (ABBGNRS, 2017)

A uniformly discrete Benjamini-Schramm convergent sequence is Plancherel.
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Benjamini-Schramm vs Plancherel convergence

Benjamini-Schramm + Uniformly Discrete

Plancherel

Benjamini-Schramm

p

??

Theorem (G., Kamp, 2024)

There exists a Benjamini-Schramm convergent sequence of compact hyperbolic surfaces which
is not Plancherel convergent.
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Asymptotics for the Length Spectrum

(Mn)n∈N has the closed geodesics property if for all R > 0

N(C(Mn),R)

vol(Mn)
−→ 0, as n → ∞.

Theorem (Raimbault, 2018)

(Mn)n∈N has the closed geodesic property =⇒ (Mn)n∈N is Benjamini-Schramm.
(Mn)n∈N is Benjamini-Schramm and uniformly discrete =⇒ (Mn)n∈N has the closed
geodesic property

(Mn)n∈N has the simple closed geodesics property if for all R > 0

N(S(Mn),R)

vol(Mn)
−→ 0, as n → ∞.
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G semisimple, rank 1

Benjamini-Schramm + Uniform Discreteness

Closed geodesics property Plancherel

Simple closed geodesics property Benjamini-Schramm

p
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SL2(R)
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Construction of the example

Consider the principal congruence subgroups

Γ(N) =


a b

c d

 ∈ SL2(Z) : a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

 .

We denote by X (N) = Γ(N) \H the congruence surface of level N.
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Construction of the example

The number of cusps of X (N) is always even for N ≥ 3

and InjRad X (N)
N→∞−−−−→ ∞.
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Construction of the example

Decompose X (N) into (possibly degenerate) pairs of pants.

The boundary components of the
pants are either geodesics or punctures.

22/25



Construction of the example

Decompose X (N) into (possibly degenerate) pairs of pants. The boundary components of the
pants are either geodesics or punctures.

22/25



Construction of the example

Decompose X (N) into (possibly degenerate) pairs of pants. The boundary components of the
pants are either geodesics or punctures.

22/25



Construction of the example

We keep the boundary geodesics and replace each puncture by a geodesic of length t > 0.
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Construction of the example

Reassemble these pieces using the old identifications. Since the number of cusps of X (N) is
even, we can identify the remaining geodesics in pairs. This yields a closed hyperbolic surface
Xt(N).
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Construction of the example

Let (tn)n∈N be a sequence of positive real numbers converging towards 0.

Let (Xn)n∈N be the
sequence of closed hyperbolic surfaces defined by Xn = Xtn(n).

The sequence (Xn)n∈N is Plancherel convergent if and only if t−1
n grows sub-exponentially

in n.
The sequence (Xn)n∈N is Benjamini–Schramm convergent.
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Thank you for your attention!
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