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K C G maximal compact subgroup
X = G/K associated Riemannian symmetric space

(Fn)nen sequence of lattices in G

M, =T, \ X associated sequence of locally simmetric spaces
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Overview

Benjamini-Schramm Convergence (geometrical)

Plancherel Convergence (spectral)
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Benjamini-Schramm convergence

isometric to a ball in X.

~ _
Let M =T\ X. The injectivity radius at a point p is the
radius of the largest ball in M centered at p which is J
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Benjamini-Schramm convergence

N \ .
Let M =T\ X. The injectivity radius at a point p is the
radius of the largest ball in M centered at p which is

isometric to a ball in X. J

For R > 0, the R-thin part of M is

Scr= {p € X : InjRad(p) < R}.
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Benjamini-Schramm convergence

Definition (Benjamini-Schramm convergence)

We say that a sequence (M,),en of locally symmetric spaces given by M, =T, \ X is
Benjamini-Schramm convergent to X if for every R > 0

vol (Mn)<r)
W — 0, as n — oQ.
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Benjamini-Schramm convergence

Definition (Benjamini-Schramm convergence)

We say that a sequence (M,),en of locally symmetric spaces given by M, =T, \ X is
Benjamini-Schramm convergent to X if for every R > 0

vol (Mn)<r)
W — 0, as n — oQ.

Equivalently, (M,)nen is BS-convergent if for any R > 0, the probability of a ball in M, of
radius R being isometric to a ball in X is asimptotically 1.
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=
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An example

Let I C G be a torsion free cocompact lattice.
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An example

Let I C G be a torsion free cocompact lattice. Consider a sequence of cocompact lattices
Fr=ri1>r>...

such that
Ql,«al VneN,;
© ,en o = {e} (trivial intersection).
Such a sequence {I',} en is called a tower of normal subgroups of I'.
InjRad(M,,) 2% 50 = the R-thin part of M, is empty for large enough n = M, is
Benjamini-Schramm convergent to X.
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Plancherel convergence

G = unitary dual of G.
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Plancherel convergence

G = unitary dual of G.

For f € C°(G) and 7 € G,

is a trace class operator.

~

f . mw— troo(f) is the (scalar) Fourier transform of f.
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Plancherel convergence

' C G cocompact lattice.

71'65

Call pr:= > e m(m,T)éx the spectral measure associated to I

For f € C°(G),

pr(f) = m(xD)f(x),  pp(f) = /6 f(m)dppi(m) = £(1).

ﬂ'ECA;
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Plancherel convergence

Definition (Plancherel convergence)

A sequence (') ey of cocompact lattices in G, or equiv. the sequence (M,),en of associated
locally symmetric spaces, is called a Plancherel sequence if for every f € C°(G)

]. ~n ~
m#rn(f) — ppi(f), as n — oo.

Let A C é\ be open, pre-compact, ,up/—regu|ar.
1
(rn)neN Plancherel = WMFH(A) — ,LLP/(A), as n — o0,

i.e. (I'n)nen has the limit multiplicity property.
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Asymptotics of the Laplace spectrum

G = SLa(R).
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Asymptotics of the Laplace spectrum

G = SLy(R).

(F'n)nen sequence of cocompact lattices.

Identify spherical representations of SLp(R) with [0, c0).
Forall 0 < a < b < oo, N(A, My, a, b) = ur,((a, b)).

The limit multiplicity property translates to:

N(A, My, a,b) noo.

vol(M,) nei((a, b)).
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Geometrical interpretation

Theorem (Deitmar, 2018)

(Mn)nen is a Plancherel sequence if and only if for every R > 0

1
vol(M,)

[Fnﬁ(rﬁ-xﬂ&;(@)dxﬂa
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Theorem (Deitmar, 2018)

A Plancherel sequence is Benjamini-Schramm convergent.

Definition (Uniform Discreteness)

We call a sequence of locally symmetric spaces (M,)qen uniformly discrete if there is a uniform
lower bound on the injectivity radius of M,, =T, \ X for n € N.

Theorem (ABBGNRS, 2017)

A uniformly discrete Benjamini-Schramm convergent sequence is Plancherel.
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Benjamini-Schramm vs Plancherel convergence

Benjamini-Schramm + Uniformly Discrete

Plancherel

Benjamini-Schramm
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Benjamini-Schramm vs Plancherel convergence

Benjamini-Schramm + Uniformly Discrete

Plancherel

7

Benjamini-Schramm

Theorem (G., Kamp, 2024)

There exists a Benjamini-Schramm convergent sequence of compact hyperbolic surfaces which
is not Plancherel convergent.
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N
Asymptotics for the Length Spectrum

(Mp)nen has the closed geodesics property if for all R > 0

N(C(Mn), R)

— 0 — 00.
vol(M,) , as n— oo
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N
Asymptotics for the Length Spectrum

(Mp)nen has the closed geodesics property if for all R > 0

N
M NN O’ as n — oo.
vol(M,,)

Theorem (Raimbault, 2018)
@ (My)nen has the closed geodesic property = (M,)pen is Benjamini-Schramm.

® (My)nen is Benjamini-Schramm and uniformly discrete = (M,)en has the closed
geodesic property

(Mn)nen has the simple closed geodesics property if for all R > 0

N(S(Mn), R)

vol(M,) — 0, as n — oo.
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G semisimple, rank 1

Benjamini-Schramm + Uniform Discreteness

Closed geodesics property Plancherel

Simple closed geodesics property Benjamini-Schramm
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SLy(R)

Benjamini-Schramm + Uniform Discreteness

Closed geodesics property Plancherel

Simple closed geodesics property =————————=- Benjamini-Schramm
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SLy(R)

Closed geodesics property

Simple closed geodesics property =——————= Benjamini-Schramm

Pla

nch

Benjamini-Schramm + Uniformly Discrete

erel
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Construction of the example

Consider the principal congruence subgroups

r(N) = { (a b) €SL(Z) - ad=1 (mod N), b,c =0 (mod N)}.
c d
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Construction of the example

Consider the principal congruence subgroups

r(N) = { (a b) €SL(Z) - ad=1 (mod N), b,c =0 (mod N)}.
c d

We denote by X(N) = T'(N) \ H the congruence surface of level N.
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Construction of the example

The number of cusps of X(N) is always even for N > 3
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Construction of the example

We keep the boundary geodesics and replace each puncture by a geodesic of length t > 0.

23/25



Construction of the example

Reassemble these pieces using the old identifications. Since the number of cusps of X(N) is
even, we can identify the remaining geodesics in pairs. This yields a closed hyperbolic surface
X:(N).
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Let (tn)nen be a sequence of positive real numbers converging towards 0.
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Construction of the example

Let (tn)nen be a sequence of positive real numbers converging towards 0. Let (X,;)nen be the
sequence of closed hyperbolic surfaces defined by X, = X;,(n).

@ The sequence (X,)nen is Plancherel convergent if and only if ¢, grows sub-exponentially
in n.

@ The sequence (X,)nen is Benjamini-Schramm convergent.
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Thank you for your attention!
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