Jacquet-Langlands
Korrespondenz für Torsionsgruppen, 1. Anton Deitmar: Modulformen und Kohomologie [CV] 2.1 - 3.4 2. Anton Deitmar: Kohomologische Darstellungen [CV] 3.5 - 3.10 3. Jan Feldmann: Alt- und Neuformen [CV] 4.1 - 4.5 4. Claudius Kamp: Reidemeister- und Analytische Torsion [CV] 5.1 - 5.4 5. Jan Feldmann: Modulare Symbole, Randtorsion [CV] 5.5 - 5.10 6. Claudius Kamp: Klassische Jacquet-Langlands Korresponenz [CV] 7.1 - 7.3 [GJ] 7. Jan Feldmann: Jacquet-Langlands für Torsionsgruppen [CV] 6.4- 6.9 Literatur: [CV] Calegari, Frank; Venkatesh, Akshay: A torsion Jacquet-Langlands correspondence. Astérisque No. 409 (2019), [GJ] Gelbart, Stephen; Jacquet, Hervé: Forms of GL(2) from the analytic point of view. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 213–251, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979. Sonderliteratur: Arthur, James: The principle of functoriality. Mathematical challenges of the 21st century (Los Angeles, CA, 2000). Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 1, 39–53. |