Oberseminar Analysis und Zahlentheorie

Sommersemester 2021

  Di 14-16 C9A03

Jacquet-Langlands Korrespondenz für Torsionsgruppen,

1. Anton Deitmar: Modulformen und Kohomologie
[CV] 2.1 - 3.4
2. Anton Deitmar:
Kohomologische Darstellungen
[CV] 3.5 - 3.10
3. Jan Feldmann:
Alt- und Neuformen
[CV] 4.1 - 4.5
4. Claudius Kamp:
Reidemeister- und Analytische Torsion
[CV] 5.1 - 5.4
5. Jan Feldmann:
Modulare Symbole, Randtorsion
[CV] 5.5 - 5.10
6. Claudius Kamp:
Klassische Jacquet-Langlands Korresponenz
[CV] 7.1 - 7.3
[GJ]
7. Jan Feldmann: Jacquet-Langlands für Torsionsgruppen
[CV] 6.4- 6.9

Literatur:
[CV] Calegari, Frank; Venkatesh, Akshay: A torsion Jacquet-Langlands correspondence. Astérisque No. 409 (2019),
[GJ] Gelbart, Stephen; Jacquet, Hervé: Forms of GL(2) from the analytic point of view. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 213–251, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.

Sonderliteratur:
Arthur, James: The principle of functoriality. Mathematical challenges of the 21st century (Los Angeles, CA, 2000). Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 1, 39–53.