Vorträge in der Woche 06.06.2016 bis 12.06.2016
Vorherige Woche
Nächste Woche
Alle Vorträge
Montag, 06.06.2016: Partial Differential Equations in Geometry
Prof. Dr. Simon Brendle (Stanford University und Columbia University)
A central theme in geometry is the study of manifolds and their curvature. In this lecture series, we will discuss how techniques involving partial differential equations have shed light on several longstanding problems in global differential geometry. In particular, we will focus on the geometry of hypersurfaces, and discuss the isoperimetric inequalities, Alexandrov’s theorem on embedded surfaces in R n of constant mean curvature, as well as our proof of Lawson’s 1969 conjecture concerning embedded minimal tori in S 3 . Time permitting, I will discuss some recent results on the classification of self-similar solutions to geometric flows.
Uhrzeit: |
16:15 |
Ort: |
N 16 |
Gruppe: |
Gastvorlesung |
Einladender: |
Huisken |
Dienstag, 07.06.2016: The moonshine modle II
Julien Sessler
Uhrzeit: |
14:15 |
Ort: |
C9 A03 |
Gruppe: |
OSAZ |
Einladender: |
Deitmar |
Dienstag, 07.06.2016: The j-function
Benedikt Otto
Uhrzeit: |
15:00 |
Ort: |
C9 A03 |
Gruppe: |
OSAZ |
Einladender: |
Deitmar |
Donnerstag, 09.06.2016: Robust methods for computing extremal points of real pseudospectra
Bart Vandereycken (Université de Genève)
Uhrzeit: |
14:15 |
Ort: |
N16 |
Gruppe: |
Oberseminar Numerik |
Einladender: |
Lubich, Prohl |
Donnerstag, 09.06.2016: Terminal Fano T-varieties of complexity one
Michele Nicolussi (Universität Tübingen)
We study terminal Q-factorial Fano 3-folds X that come with an effective 2-torus action. Our approach generalizes the correspondence between toric Fano varieties and lattice polytopes: We associate with X a certain polyhedral complex which allows to charcterize, for example, terminality in combinatorial terms.
Uhrzeit: |
14:15 |
Ort: |
S8 |
Gruppe: |
Oberseminar Algebraische Geometrie |
Einladender: |
Batyrev, Hausen, Markwig |
Donnerstag, 09.06.2016: Pointwise Convergence of Operator Means
H. Kreidler
The classical ergodic theorems of Birkhoff and von Neumann are concerned with convergence almost everywhere and uniform convergence of operator means. In this talk we discuss conditions under which means (A_n) of a given Koopman operator on C(K) converge "pointwise", i.e. A_nf is pointwise convergent for each f in C(K). To study this situation we use algebraic properties of certain compact right topological operator semigroups.
Uhrzeit: |
14:15 |
Ort: |
S10 |
Gruppe: |
Oberseminar Funktionalanalysis |
Einladender: |
Prof. R. Nagel |
Donnerstag, 09.06.2016: Generalizing the Halmos-von Neumann Theorem
N. Edeko
We examine to what extent the Halmos-von Neumann Theorem for ergodic systems can be generalized to the non-ergodic case.
Uhrzeit: |
15:00 |
Ort: |
S10 |
Gruppe: |
Oberseminar Funktionalanalysis |
Einladender: |
Prof. R. Nagel |