Vorträge in der Woche 06.06.2016 bis 12.06.2016


Vorherige Woche Nächste Woche Alle Vorträge

Montag, 06.06.2016: Partial Differential Equations in Geometry

Prof. Dr. Simon Brendle (Stanford University und Columbia University)

A central theme in geometry is the study of manifolds and their curvature. In this lecture series, we will discuss how techniques involving partial differential equations have shed light on several longstanding problems in global differential geometry. In particular, we will focus on the geometry of hypersurfaces, and discuss the isoperimetric inequalities, Alexandrov’s theorem on embedded surfaces in R n of constant mean curvature, as well as our proof of Lawson’s 1969 conjecture concerning embedded minimal tori in S 3 . Time permitting, I will discuss some recent results on the classification of self-similar solutions to geometric flows.

Uhrzeit: 16:15
Ort: N 16
Gruppe: Gastvorlesung
Einladender: Huisken

Dienstag, 07.06.2016: The moonshine modle II

Julien Sessler

Uhrzeit: 14:15
Ort: C9 A03
Gruppe: OSAZ
Einladender: Deitmar

Dienstag, 07.06.2016: The j-function

Benedikt Otto

Uhrzeit: 15:00
Ort: C9 A03
Gruppe: OSAZ
Einladender: Deitmar

Donnerstag, 09.06.2016: Robust methods for computing extremal points of real pseudospectra

Bart Vandereycken (Université de Genève)

Uhrzeit: 14:15
Ort: N16
Gruppe: Oberseminar Numerik
Einladender: Lubich, Prohl

Donnerstag, 09.06.2016: Terminal Fano T-varieties of complexity one

Michele Nicolussi (Universität Tübingen)

We study terminal Q-factorial Fano 3-folds X that come with an effective 2-torus action. Our approach generalizes the correspondence between toric Fano varieties and lattice polytopes: We associate with X a certain polyhedral complex which allows to charcterize, for example, terminality in combinatorial terms.

Uhrzeit: 14:15
Ort: S8
Gruppe: Oberseminar Algebraische Geometrie
Einladender: Batyrev, Hausen, Markwig

Donnerstag, 09.06.2016: Pointwise Convergence of Operator Means

H. Kreidler

The classical ergodic theorems of Birkhoff and von Neumann are concerned with convergence almost everywhere and uniform convergence of operator means. In this talk we discuss conditions under which means (A_n) of a given Koopman operator on C(K) converge "pointwise", i.e. A_nf is pointwise convergent for each f in C(K). To study this situation we use algebraic properties of certain compact right topological operator semigroups.

Uhrzeit: 14:15
Ort: S10
Gruppe: Oberseminar Funktionalanalysis
Einladender: Prof. R. Nagel

Donnerstag, 09.06.2016: Generalizing the Halmos-von Neumann Theorem

N. Edeko

We examine to what extent the Halmos-von Neumann Theorem for ergodic systems can be generalized to the non-ergodic case.

Uhrzeit: 15:00
Ort: S10
Gruppe: Oberseminar Funktionalanalysis
Einladender: Prof. R. Nagel