Department of Mathematics

Vorträge in der Woche 24.07.2023 bis 30.07.2023


Vorherige Woche Nächste Woche Alle Vorträge

Donnerstag, 27.07.2023: A proof of the Willmore inequality via a Robinson style argument

Anabel Miehe (Universität Tübingen)

In the three-dimensional Euclidean space, a classical result about the geometry of smooth closed surfaces is the Willmore inequality, shown by Willmore in 1968, which gives a lower bound on the integral of the squared mean curvature over the surface. A generalization to higher dimensions was found by Chen and later also proved by Agostiniani and Mazzieri using a monotonicity formula. In this talk, we consider a Robinson style argument based on a divergence inequality to give another proof of the Willmore and in addition a weighted Minkowski inequality. This is joint work with Carla Cederbaum.

Uhrzeit: 14:15
Ort: S9 (C06H05) and virtual via zoom, for zoom link please contact Martina Neu
Gruppe: Oberseminar Geometrische Analysis, Differentialgeometrie und Relativitätstheorie
Einladender: Carla Cederbaum, Gerhard Huisken, zusammen mit Jan Metzger (Potsdam)

Donnerstag, 27.07.2023: Approximating Gibbs states with MPOs

Joël Charles-Rebuffé (ENS Lyon)

A major problem with quantum computing is the important noise that quantum states have to face in real quantum computers. This can prevent the good preparation of a Gibbs state for instance. The idea we explored is a quantum state learning algorithm, which tries to reconstruct an approximation of the original Gibbs state from copies of its marginals.

Uhrzeit: 14:30
Ort: C3N14
Gruppe: Oberseminar Mathematical Physics
Einladender: Capel, Keppeler, Lemm, Pickl, Teufel, Tumulka

Donnerstag, 27.07.2023: Inverse mean curvature flow and Ricci-pinched 3-manifolds (joint with Thomas Körber)

Gerhard Huisken (Universität Tübingen)

Let (M,g) be a complete, connected, non-compact Riemannian three-manifold with non-negative, uniformly pinched Ricci curvature. The lecture describes a new proof based on inverse mean curvature flow that (M,g) is either flat or has non-Euclidean volume growth. In conjunction with results of J. Lott and of M.-C. Lee and P. Topping, this gives an alternative proof of a conjecture of R. Hamilton recently proven by A. Deruelle, F. Schulze, and M. Simon using Ricci flow.

Uhrzeit: 15:50
Ort: S9 (C06H05) and virtual via zoom, for zoom link please contact Martina Neu
Gruppe: Oberseminar Geometrische Analysis, Differentialgeometrie und Relativitätstheorie
Einladender: Carla Cederbaum, Gerhard Huisken, zusammen mit Jan Metzger (Potsdam)