Interior-Boundary Conditions and Their Physical Meaning

Roderich Tumulka

Mathematical physics colloquium Tübingen, 2 December 2024

通 ト イ ヨ ト イ ヨ ト

Schrödinger equation of non-relativistic QM

configuration space $\mathcal{Q} = \mathbb{R}^{3N}$, $\psi : \mathcal{Q} \times \mathbb{R}_t \to \mathbb{C}$

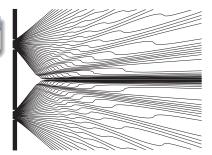
$$i\hbarrac{\partial\psi}{\partial t}=H\psi=-rac{\hbar^2}{2m}
abla^2\psi+V\psi$$

$$\psi_t = U_t \psi_0 = e^{-iHt/\hbar} \psi_0$$

Born's rule

 $\rho_t(x) = |\psi_t(x)|^2$

$$\begin{split} \psi_t &\in \mathscr{H} = L^2(\mathcal{Q}, \mathbb{C}) \\ U_t &: \mathscr{H} \to \mathscr{H} \text{ is unitary} \\ &\Leftarrow H \text{ is self-adjoint} \\ \text{prob. current } \boldsymbol{j} &= \frac{\hbar}{m} \text{Im}[\psi^* \nabla \psi] \\ \frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} &= 0 \text{ continuity equation} \end{split}$$

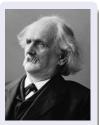


く 白 ト く ヨ ト く ヨ ト

Boundary conditions for the Schrödinger equation

- Q = [0, 1]
- for time evolution, PDE is not enough: also need boundary conditions (BCs) such as

$$\begin{split} \psi(0,t) &= 0 \ \forall t \ (\text{Dirichlet}), \\ \frac{\partial \psi}{\partial x}(1,t) &= 0 \ \forall t \ (\text{Neumann}) \end{split} \tag{1}$$



Carl Neumann

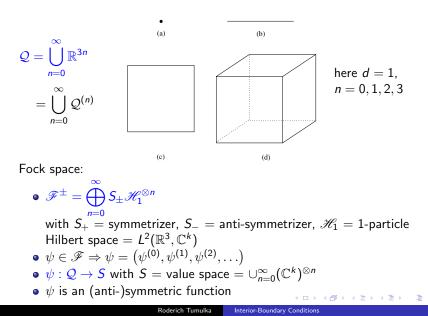
・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- built into the domain \mathscr{D} of the Hamiltonian: $H = -\frac{\hbar^2}{2m}\nabla^2$, $\mathscr{D} = \{\psi \in L^2([0,1]) : \nabla^2 \psi \in L^2([0,1]), \psi \text{ satisfies } (1)\}$
- (1) are reflecting boundary conditions: they make (H, \mathscr{D}) self-adjoint $\Rightarrow U_t = e^{-iHt/\hbar}$ unitary \Rightarrow no loss of probability
- Likewise for Robin BC ($\alpha, \beta \neq (0, 0)$ real constants):

$$\alpha \frac{\partial \psi}{\partial x} + \beta \, \psi(x) = \mathbf{0}$$

Particle-position representation of a Fock space vector

Configuration space of a variable number of particles:



UV divergence problem

For example, consider a simplified model quantum field theory (QFT):

- x-particles can emit and absorb y-particles, $x \stackrel{\leftarrow}{\hookrightarrow} x + y$.
- There is only 1 x-particle, and it is fixed at the origin. $\mathscr{H} = \mathscr{F}_y^+$

• configuration space
$$\mathcal{Q} = igcup_{n=0}^\infty \mathbb{R}^{3n}$$
, coupling constant $g \in \mathbb{R}$

Original Hamiltonian in the particle-position representation:

$$(\mathcal{H}_{\text{orig}}\psi)^{(n)}(\boldsymbol{y}_{1}\dots\boldsymbol{y}_{n}) = -\frac{\hbar^{2}}{2m_{y}}\sum_{j=1}^{n}\nabla_{\boldsymbol{y}_{j}}^{2}\psi^{(n)}(\boldsymbol{y}_{1}\dots\boldsymbol{y}_{n}) + nE_{0}\psi^{(n)}$$
$$+ g\sqrt{n+1}\psi^{(n+1)}(\boldsymbol{y}_{1}\dots\boldsymbol{y}_{n},\boldsymbol{0})$$
$$+ \frac{g}{\sqrt{n}}\sum_{j=1}^{n}\delta^{3}(\boldsymbol{y}_{j})\psi^{(n-1)}(\boldsymbol{y}_{1}\dots\widehat{\boldsymbol{y}_{j}}\dots\boldsymbol{y}_{n}),$$

is UV divergent. ($\hat{} = \text{omit}, E_0 \ge 0$ energy needed for creating y)

3

Well-defined, "regularized" version of H

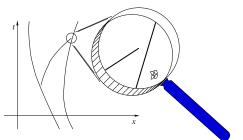
UV cut-off $\varphi \in L^2(\mathbb{R}^3)$:

$$(\mathcal{H}_{\text{cutoff}}\psi)(\mathbf{y}_{1}\ldots\mathbf{y}_{n}) = -\frac{\hbar^{2}}{2m_{y}}\sum_{j=1}^{n}\nabla^{2}_{\mathbf{y}_{j}}\psi(\mathbf{y}_{1}\ldots\mathbf{y}_{n}) + nE_{0}\psi^{(n)} + g\sqrt{n+1}\sum_{i=1}^{m}\int_{\mathbb{R}^{3}}d^{3}\mathbf{y}\,\varphi^{*}(\mathbf{y})\,\psi(\mathbf{y}_{1}\ldots\mathbf{y}_{n},\mathbf{y}) + \frac{g}{\sqrt{n}}\sum_{i=1}^{m}\sum_{j=1}^{n}\varphi(\mathbf{y}_{j})\,\psi(\mathbf{y}_{1}\ldots\widehat{\mathbf{y}_{j}}\ldots\mathbf{y}_{n})$$

"smearing out" the x-particle with "charge distribution" $\varphi(\cdot)$

通 ト イ ヨ ト イ ヨ ト -

... emission and absorption occurs anywhere in a ball around the x-particle (= in the support of $\varphi = \underbrace{ \begin{array}{c} & \\ & \\ & \\ & \end{array} }$



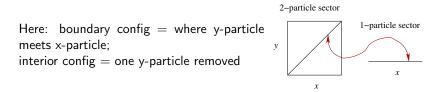
- There is no empirical evidence that an electron has positive radius.
- Positive radius leads to difficulties with Lorentz invariance.

This UV problem can be solved!

[Teufel and Tumulka 1505.04847, 1506.00497]

通 ト イ ヨ ト イ ヨ ト

Novel idea: Interior-boundary condition



Interior-boundary condition (IBC)

 $\psi^{(n+1)}(\mathsf{bdy}) = (\mathsf{const.}) \psi^{(n)}$

links two configurations connected by the creation or annihilation of a particle.

For example, with an x-particle at $\mathbf{0}$,

$$\psi^{(n+1)}(y^n, \mathbf{0}) = \frac{g m_y}{2\pi\hbar^2\sqrt{n+1}} \psi^{(n)}(y^n).$$

with $y^n = (y_1, ..., y_n)$.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

A derivation of an IBC in 1d

due to [Keppeler and Sieber 1511.03071]

for simplicity in a truncated Fock space

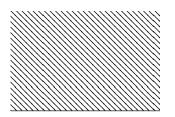
$$\mathscr{H} = \bigoplus_{n=0} S_+ \mathscr{H}_1^{\otimes n} = \mathbb{C} \oplus \mathscr{H}_1 = \mathbb{C} \oplus L^2(\mathbb{R}).$$

If $(H_{\text{orig}}\psi)^{(1)}(y) = -\frac{1}{2m}\partial_y^2\psi^{(1)}(y) + g\,\delta(y)\,\psi^{(0)}$ lies in $L^2(\mathbb{R})$, then

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

The basic idea of IBCs: a toy example

Consider quantum mechanics on a space \mathcal{Q} with a boundary $\partial \mathcal{Q}$.



- E.g., $Q = Q^{(1)} \cup Q^{(2)} = \mathbb{R} \cup (\mathbb{R} \times [0, \infty))$ $\partial Q = \partial Q^{(2)} = \mathbb{R} \times \{0\}$
- Consider probability current vector field *j* on *Q*.
- Suppose *j* has nonzero flux into ∂Q , $0 \neq \int_{\partial Q} dx j \cdot n \ (n = \text{normal to } \partial Q)$
- We want the prob that disappears at q ∈ ∂Q to reappear at f(q) ∈ Q.

く 白 ト く ヨ ト く ヨ ト

- E.g., what disappears at $(x, 0) \in \partial Q^{(2)}$ reappears at f(x, 0) = x, so $f : \partial Q^{(2)} \to Q^{(1)}$. In general, $f : \partial Q \to Q$.
- This is achieved through
 - \rightarrow an extra term in H for $\mathcal{Q}^{(1)}$
 - \rightarrow an interior-boundary condition $\psi(q) = (\text{const.}) \psi(f(q))$

IBC in the toy example

- $\psi_t: \mathcal{Q} \to \mathbb{C}, \quad \psi = (\psi^{(1)}, \psi^{(2)})$
- $g \in \mathbb{R}$ coupling constant
- IBC: $\psi^{(2)}(x,0) = -\frac{2mg}{\hbar^2} \psi^{(1)}(x)$
- Hamiltonian:

$$(H\psi)^{(1)}(x) = -\frac{\hbar^2}{2m} \partial_x^2 \psi^{(1)}(x) + g \,\partial_y \psi^{(2)}(x,0)$$

$$(H\psi)^{(2)}(x,y) = -\frac{\hbar^2}{2m} \left(\partial_x^2 + \partial_y^2\right) \psi^{(2)}(x,y) \quad \text{for } y > 0.$$

Theorem

[Teufel and Tumulka 1506.00497]

 $\begin{aligned} H \text{ is rigorously defined and self-adjoint on the dense-in-} L^2(\mathcal{Q}) \text{ domain} \\ \mathscr{D} &= \Big\{ (\psi^{(1)}, \psi^{(2)}) : \psi^{(n)} \in H^2(\mathcal{Q}^{(n)}) \ \forall n, \ \psi^{(2)} \Big|_{\mathbb{R} \times \{0\}} = -\frac{2mg}{\hbar^2} \psi^{(1)} \Big\}. \end{aligned}$

Probability balance equations:

$$\partial_{t} |\psi^{(2)}|^{2} = -\partial_{x} j_{x}^{(2)} - \partial_{y} j_{y}^{(2)},$$

$$\partial_{t} |\psi^{(1)}|^{2} = -\partial_{x} j_{x}^{(1)} + \underbrace{\frac{2g}{\hbar} \operatorname{Im} \left[\psi^{(1)}(x)^{*} \partial_{y} \psi^{(2)}(x, 0) \right]}_{= -j_{y}^{(2)}(x, 0) \text{ by the IBC}}$$

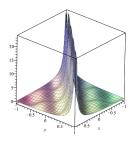
IBC for particle creation model

Consider again

- x-particle at **0** emits and absorbs y-particles, $\mathscr{H} = \mathscr{F}_y^+$
- IBC $\lim_{r \to 0+} r\psi(y^n, r\omega) = \frac{gm}{2\pi\hbar^2\sqrt{n+1}}\psi(y^n)$ for all $\omega \in \mathbb{S}^2$ (2)

•
$$(H_{IBC}\psi)(y^n) = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{g\sqrt{n+1}}{4\pi}\int_{\mathbb{S}^2} d^2\omega \lim_{r\to 0+} \partial_r \left(r\psi(y^n, r\omega)\right)$$

 $+ nE_0\psi + \frac{g}{\sqrt{n}}\sum_{j=1}^n \delta^3(\mathbf{y}_j)\psi(y^n\setminus\mathbf{y}_j)$ (3)



IBC (2) $\Rightarrow \psi$ typically diverges like $1/r = 1/|\mathbf{y}_j|$ as $\mathbf{y}_j \rightarrow \mathbf{0}$. In fact, $\psi(y^n, r\omega) = c_{-1}(y^n) r^{-1} + c_0(y^n) r^0 + o(r^0)$ and (2) $\Leftrightarrow c_{-1}(y^n) = \frac{gm}{2\pi\hbar^2\sqrt{n+1}}\psi(y^n)$ (3) $\Leftrightarrow (H\psi)(y^n) = -\frac{\hbar^2}{2m}\nabla^2\psi + g\sqrt{n+1}c_0(y^n)$ $+nE_0\psi + \frac{g}{\sqrt{n}}\sum \delta^3(\mathbf{y}_j)\psi(y^n \setminus \mathbf{y}_j)$

Rigorous absence of UV divergence in this model

- Note that $\nabla^2 \frac{1}{|\mathbf{y}|} = -4\pi\delta^3(\mathbf{y})$ (cf. Poisson eq $\nabla^2\phi = -4\pi\rho$).
- Thus, in $abla^2\psi$ the 1/r divergent contribution to ψ cancels the $\delta^3!$

Theorem [Lampart, Schmidt, Teufel, Tumulka 1703.04476]

On a suitable dense domain \mathcal{D}_{IBC} of ψ s in \mathcal{H} satisfying the IBC (2), H_{IBC} is well defined, self-adjoint, and positive. No UV divergence!

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Why it works: flux of probability into a point

• probability current
$$\mathbf{j}_{\mathbf{y}_{j}}(\mathbf{y}^{n}) = \frac{\hbar}{m} \operatorname{Im} \psi^{*} \nabla_{\mathbf{y}_{j}} \psi$$

• $\frac{\partial |\psi(\mathbf{y}^{n})|^{2}}{\partial t} = -\sum_{j=1}^{n} \nabla_{\mathbf{y}_{j}} \cdot \mathbf{j}_{\mathbf{y}_{j}} + (n+1) \lim_{r \to 0+} \underbrace{r^{2} \int_{\mathbb{S}^{2}} d^{2} \omega \, \omega \cdot \mathbf{j}_{\mathbf{y}_{n+1}}(\mathbf{y}^{n}, r\omega)}_{\text{flux into 0 on } (n+1) \cdot \text{sector}}$
• motion towards $\mathbf{0} \Rightarrow \rho \sim 1/r^{2} \text{ as } r \to 0$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Bohmian picture

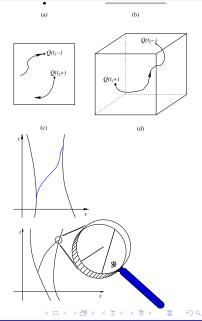
- $t\mapsto Q(t)\in \mathcal{Q}$ piecewise continuous, jumps between $\mathcal{Q}^{(n)}$ and $\mathcal{Q}^{(n+1)}$
- within $\mathcal{Q}^{(n)}$, Bohm's law of motion

 $rac{dQ}{dt} = rac{\hbar}{m_B} {
m Im} rac{
abla \psi^{(n)}}{\psi^{(n)}} ig(Q(t) ig)$

with IBC:

- when $Q(t) \in Q^{(n)}$ reaches $\mathbf{y}_j = \mathbf{0}$, it jumps to $(y^n \setminus \mathbf{y}_j) \in Q^{(n-1)}$
- $\bullet\,$ emission of new y-particle at 0 at random time with random direction
- with UV cut-off:
- emission and absorption occurs anywhere in a ball around 0 (= in

the support of φ



- Now suppose that y-particles are relativistic and have spin $\frac{1}{2}$.
- A free y-particle is described by the Dirac equation

$$ic\hbar\gamma^\mu\partial_\mu\psi=mc^2\psi$$

or

$$i\hbar\frac{\partial\psi}{\partial t} = -ic\hbar\boldsymbol{\alpha}\cdot\nabla\psi + mc^{2}\beta\psi$$

- $\mathscr{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}^4)$ for 1 particle
- Henceforth, $\hbar = 1 = c$.

通 ト イ ヨ ト イ ヨ ト

Example of a reflecting boundary condition for the Dirac equation

- $\mathcal{Q} = \mathbb{R}^3_{>} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 \ge 0\}$ spatial domain with bdry
- $\psi : \mathbb{R}_t \times \mathbb{R}^3_> \to \mathbb{C}^4$
- current $j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$ or $j^{0} = |\psi|^{2}$, $j^{i} = \psi^{\dagger} \alpha^{i} \psi$
- Dirac equation $i\gamma^{\mu}\partial_{\mu}\psi = m\psi$ or $i\partial_{t}\psi = (-i\alpha \cdot \nabla + \beta m)\psi$
- α, β, γ Dirac matrices; $\alpha^i = \gamma^0 \gamma^i$, $\beta = \gamma^0$ self-adjoint
- boundary condition (BC) $(\gamma^3 i)\psi(x_1, x_2, 0) = 0$ or $\alpha^3\psi = i\beta\psi$

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in $L^2(\mathbb{R}^3_>, \mathbb{C}^4)$, $\mathscr{D} = \{ \psi \in H^1(\mathbb{R}^3_>, \mathbb{C}^4) : (\gamma^3 - i)\psi |_{\partial \mathcal{Q}} = 0 \}.$

(BC) ensures there is no current into the boundary:

$$j^{3}(x_{1}, x_{2}, 0) = \psi^{\dagger} \alpha^{3} \psi = \frac{1}{2} \psi^{\dagger} (\alpha^{3} \psi) + \frac{1}{2} (\alpha^{3} \psi)^{\dagger} \psi$$
$$\stackrel{(BC)}{=} \frac{1}{2} \psi^{\dagger} (i\beta\psi) + \frac{1}{2} (i\beta\psi)^{\dagger} \psi = \frac{i}{2} \psi^{\dagger} \beta\psi - \frac{i}{2} \psi^{\dagger} \beta\psi = 0$$

(人間) シスヨン スヨン 三日

BC specifies half of the components

• (BC) $(\gamma^3 - i)\psi = 0$ on ∂Q

- γ^3 is unitarily diagonalizable with eigenvalues $\pm i,$ each with multiplicity 2
- So, $\gamma^3 i$ is -2i times a 2d orthogonal projection.
- So, $(\gamma^3 i)\psi = 0$ sets two components of ψ to 0 and leaves two components arbitrary.

 For comparison, the reflecting boundary conditions for the Laplacian, ψ(x₁, x₂, 0) = 0 (Dirichlet) ∂₃ψ(x₁, x₂, 0) = 0 (Neumann) (α + β∂₃)ψ(x₁, x₂, 0) = 0 (Robin) each set one component of the 2d pair (ψ ∂₂ψ) to 0 and leave one

each set one component of the 2d pair $(\psi, \partial_3 \psi)$ to 0 and leave one component arbitrary.

Example of an interior-boundary condition for the Dirac equation

- configuration space $\mathcal{Q} = \mathcal{Q}^{(0)} \cup \mathcal{Q}^{(1)} = \{\emptyset\} \cup \mathbb{R}^3_>$
- mini Fock space $\mathscr{H} = \mathscr{H}^{(0)} \oplus \mathscr{H}^{(1)} = \mathbb{C} \oplus L^2(\mathbb{R}^3_>, \mathbb{C}^4)$
- Hamiltonian

$$(H\psi)^{(0)} = \int_{\mathbb{R}^2} dx_1 \, dx_2 \, N(x_1, x_2)^{\dagger} \, \psi^{(1)}(x_1, x_2, 0)$$
$$(H\psi)^{(1)}(\mathbf{x}) = -i\boldsymbol{\alpha} \cdot \nabla \psi^{(1)}(\mathbf{x}) + m\beta \psi^{(1)}(\mathbf{x}), \quad x_3 > 0$$

with $N(x_1, x_2) = e^{-x_1^2 - x_2^2}(1, 0, 1, 0)$ in the Weyl representation

- $(\gamma^3 i)\psi^{(1)}(x_1, x_2, 0) = (\gamma^3 i)N(x_1, x_2)\psi^{(0)}$ (IBC)
- $\bullet\,$ specifies two components of $\psi^{(1)}$ on $\partial \mathcal{Q}$ and leaves two arbitrary
- $(\gamma^3 i)\psi^{(1)}(x_1, x_2, 0) = 0$ reflecting BC to compare to.

Theorem

[Schmidt, Teufel, Tumulka 1811.02947]

< 回 > < 三 > < 三 >

 $\begin{aligned} & \text{H is rigorously defined and self-adjoint on} \\ & \left\{ (\psi^{(0)}, \psi^{(1)}) \in \mathbb{C} \oplus H^1(\mathbb{R}^3_{>}, \mathbb{C}^4) : (\mathsf{IBC}) \right\}. \end{aligned}$

Model of creation of Dirac particles in 1d

[Lienert and Nickel 1808.04192]

- particles move in \mathbb{R}^1 , split or coalesce according to $x \leftrightarrows x + x$.
- Dirac eq in 1d: spin space $\mathbb{C}^{2}, \gamma^{0} = \sigma_{1}, \gamma^{1} = \sigma_{1}\sigma_{3},$
- (truncated) Fock space $\mathscr{H} = \bigoplus_{n=0}^{n_{\max}} S_{-} L^{2}(\mathbb{R}^{1}, \mathbb{C}^{2})^{\otimes n}$

M. Lienert

・ 同 ト ・ ヨ ト ・ ヨ ト

- For simplicity, let $n_{\text{max}} = 2$, m = 0, ignore the n = 0 sector, so $\mathscr{H} = \mathscr{H}^{(1)} \oplus \mathscr{H}^{(2)}$
- $(H\psi)^{(1)}(x) = -i\alpha^1 \partial_x \psi^{(1)}(x) + N(x)^{\dagger} \psi^{(2)}(x,x)$ $(H\psi)^{(2)}(x_1, x_2) = (-i\alpha_1^1\partial_1 - i\alpha_2^1\partial_2)\psi^{(2)}(x_1, x_2)$ with N(x) a certain 4 \times 2-matrix.
- IBC $\psi_{-+}^{(2)}(x,x) e^{i\theta}\psi_{+-}^{(2)}(x,x) = B\psi^{(1)}(x)$

with B a certain 1×2 -matrix.

Theorem [Lienert and Nickel 1808.04192]

 H_{IBC} is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the multi-time equations.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of $(H^{\circ}, \mathscr{D}(H^{\circ})) = (-\nabla^2, C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C})).$

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of $(H^{\circ}, \mathscr{D}(H^{\circ})) = (-i\alpha \cdot \nabla + m\beta, C_{c}^{\infty}(\mathbb{R}^{3} \setminus \{\mathbf{0}\}, \mathbb{C}^{4})),$ the free Dirac Hamiltonian.

・ 同 ト ・ ヨ ト ・ ヨ ト

This has consequences for IBCs:

Fact

The non-relativistic H_{IBC} in $\mathbb{C} \oplus L^2(\mathbb{R}^3)$ with source at **0** is a self-adjoint extension of the operator $H^{\circ}(\psi^{(0)} = 0, \psi^{(1)}) = (0, -\frac{\hbar^2}{2m}\nabla^2\psi^{(1)})$ defined on $\mathscr{D}(H^{\circ}) = \{0\} \oplus C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C}).$

whereas

Theorem[Henheik and Tumulka 2006.16755]All self-adjoint extensions in $\mathbb{C} \oplus L^2(\mathbb{R}^3, \mathbb{C}^4)$ of the
relativistic operator $H^{\circ}(\psi^{(0)} = 0, \psi^{(1)}) = (0, (-i\alpha \cdot \nabla + m\beta)\psi^{(1)})$
defined on $\mathscr{D}^{\circ} = \{0\} \oplus C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C}^4)$ involve
no particle creation and are the free Dirac operator
on the upper sector.

・ロト ・回 ト ・ヨト ・ヨト - ヨ

In short, there is no IBC Hamiltonian for Dirac particles and a point source in 3d, unless...

Theorem

[Henheik and Tumulka 2006.16755]

Let $H^{\circ} = -i\alpha \cdot \nabla + m\beta + q/|\mathbf{y}|$ with $\sqrt{3}/2 < |\mathbf{q}| < 1$ be defined on $\mathscr{D}^{\circ} = \{0\} \oplus C^{\infty}_{c}(\mathbb{R}^{3} \setminus \{\mathbf{0}\}, \mathbb{C}^{4}).$ Set $B := \sqrt{1-q^{2}}$; note that $0 < B < \frac{1}{2}$. There is a self-adjoint extension (H, \mathcal{D}) of $(H^{\circ}, \mathcal{D}^{\circ})$ with • The sectors $\mathbb{C} \oplus L^2(\mathbb{R}^3, \mathbb{C}^4)$ do not decouple (i.e., creation occurs). 2 For every $\psi \in \mathscr{D}$, the upper sector is of the form $\psi^{(1)}(\mathbf{y}) = c_{-B} f_{-}(\frac{\mathbf{y}}{|\mathbf{y}|}) |\mathbf{y}|^{-B} + c_{B} f_{+}(\frac{\mathbf{y}}{|\mathbf{y}|}) |\mathbf{y}|^{B} + o(|\mathbf{y}|^{1/2})$ (5)as $\mathbf{y} \to \mathbf{0}$ with $c_{-B}, c_B \in \mathbb{C}$ and fixed functions $f_{\pm} : \mathbb{S}^2 \to \mathbb{C}^4$. Severy $\psi \in \mathscr{D}$ obeys IBC $c_{-B} = g \psi^{(0)}$ • For $\psi \in \mathscr{D}$, $(H\psi)^{(0)} = \tilde{g} c_B$ $(H\psi)^{(1)}(\mathbf{y}) = (-i\boldsymbol{\alpha}\cdot\nabla + m\beta + \frac{q}{|\mathbf{y}|})\psi^{(1)}(\mathbf{y}) \quad (\mathbf{y}\neq\mathbf{0})$ with constants $g, \tilde{g} = 4B(1+q)g^*$.

[Tumulka 0708.0070]

According to general relativity, the curved space-time created by a point with mass M > 0 and charge Q > M is the Reissner-Nordström geometry

$$ds^{2} = \lambda(r) dt^{2} - \frac{1}{\lambda(r)} dr^{2} - r^{2} d\vartheta^{2} - r^{2} \sin^{2} \vartheta d\varphi^{2}$$

with $\lambda(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$. Its metric is static in coordinates $(t, r, \vartheta, \varphi)$ and has singularity at r = 0.

- Dirac spin spaces form a vector bundle S with fibers $S_{x} \cong \mathbb{C}^{4}$.
- The metric defines a covariant derivative on S.
- $\mathscr{H}_1 = L^2$ sections of *S* over $\Sigma = \{t = \text{const.}\}.$
- Let H_1 be the free Dirac operator (depends on the curved metric).

a.m

O.M

ヘロマ 人間マ ヘヨマ ヘヨマ

IBC works with a space-time singularity

Theorem

[Henheik, Poudyal, Tumulka 2409.00677]

Let $H^{\circ} = 0 \oplus H_1$ on $\mathscr{D}^{\circ} = \{0\} \oplus C^{\infty}_c(\Sigma \setminus \{\mathbf{0}\}, S)$. There is a self-adjoint extension (H, \mathscr{D}) of $(H^{\circ}, \mathscr{D}^{\circ})$ with

2) For every $\psi \in \mathscr{D}$, the upper sector is of the form

$$\psi^{(1)}(r, \vartheta, \varphi) = c(\vartheta, \varphi) \, r^{-1/2} + \mathcal{O}(r^{1/2}) \, \text{ as } r o 0.$$

 $\textbf{ S Every } \psi \in \mathscr{D} \text{ obeys IBC }$

 $\frac{1}{2}(I-\beta) c(\vartheta,\varphi) = f_{-}(\vartheta,\varphi) \psi^{(0)}$

with fixed functions $f_{\pm} : \mathbb{S}^2 \to \mathbb{C}^4$. • For $\psi \in \mathscr{D}$, $(H\psi)^{(0)} = \langle f_+, c \rangle_{L^2(\mathbb{S}^2, \mathbb{C}^4)}$ $(H\psi)^{(1)} = H_1\psi^{(1)}$ for r > 0

Bipul Poudyal

ヘロマ ふぼう くほう くほう しゅう

Problem:

• Hamiltonian involving particle creation and annihilation is usually UV divergent, and thus ill defined

New approach:

- IBC = interior-boundary condition
- allows a new way of defining a Hamiltonian H_{IBC}
- provides rigorous definition of a self-adjoint *H*_{*IBC*}, at least for some scenarios (and we hope in many)
- no need for discretizing space, smearing out particles over positive radius, or other UV cut-off
- no need for renormalization, or taking limit of removing the UV cut-off
- makes use of particle-position representation

Thank you for your attention

イロン イヨン イヨン イヨン

2