Interior-Boundary Conditions and Their Physical Meaning

Roderich Tumulka

Mathematical physics colloquium Tübingen, 2 December 2024

 λ in the set of the λ

Schrödinger equation of non-relativistic QM

configuration space $\mathcal{Q}=\mathbb{R}^{3\textit{N}}$, $\psi:\mathcal{Q}\times\mathbb{R}_t\rightarrow\mathbb{C}$

$$
i\hbar\frac{\partial\psi}{\partial t} = H\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi
$$

$$
\psi_t = U_t \psi_0 = e^{-iHt/\hbar} \psi_0
$$

Born's rule

 $\rho_t(x) = |\psi_t(x)|^2$

 $\psi_t \in \mathcal{H} = L^2(\mathcal{Q}, \mathbb{C})$ $U_t : \mathscr{H} \to \mathscr{H}$ is unitary \Leftarrow H is self-adjoint prob. current $\mathbf{j} = \frac{\hbar}{m}$ $\frac{\hbar}{m} \text{Im}[\psi^* \nabla \psi]$ $\partial \rho$ $\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0$ continuity equation

イ何 ト イヨ ト イヨ ト

Boundary conditions for the Schrödinger equation

- $Q = [0, 1]$
- **o** for time evolution, PDE is not enough: also need boundary conditions (BCs) such as

 $\psi(0, t) = 0 \ \forall t$ (Dirichlet), $\partial \psi$ $rac{\partial \phi}{\partial x}(1, t) = 0 \,\,\forall t \,\,\text{(Neumann)}$ (1)

Carl Neumann

 $\mathcal{A} \cdot \overline{\mathcal{A}} \rightarrow \mathcal{A} \cdot \overline{\mathcal{B}} \rightarrow \mathcal{A} \cdot \overline{\mathcal{B}} \rightarrow \mathcal{B} \cdot \overline{\mathcal{B}}$

 Ω

- built into the domain \mathscr{D} of the Hamiltonian: $H = -\frac{\hbar^2}{2m}\nabla^2$, $\mathscr{D} = \left\{ \psi \in L^2([0,1]) : \nabla^2 \psi \in L^2([0,1]), \psi \text{ satisfies (1)} \right\}$ $\mathscr{D} = \left\{ \psi \in L^2([0,1]) : \nabla^2 \psi \in L^2([0,1]), \psi \text{ satisfies (1)} \right\}$ $\mathscr{D} = \left\{ \psi \in L^2([0,1]) : \nabla^2 \psi \in L^2([0,1]), \psi \text{ satisfies (1)} \right\}$
- \bullet [\(1\)](#page-2-0) are reflecting boundary conditions: they make (H, \mathscr{D}) self-adjoint $\Rightarrow U_t = e^{-iHt/\hbar}$ unitary \Rightarrow no loss of probability
- Likewise for Robin BC $(\alpha, \beta \neq (0, 0))$ real constants):

$$
\alpha \frac{\partial \psi}{\partial x} + \beta \psi(x) = 0
$$

Particle-position representation of a Fock space vector

Configuration space of a variable number of particles:

E

 QQQ

UV divergence problem

For example, consider a simplified model quantum field theory (QFT):

- x-particles can emit and absorb y-particles, $x \leq x + y$.
- There is only 1 x-particle, and it is fixed at the origin. $\mathscr{H}=\mathscr{F}_{\mathsf{y}}^+$

• configuration space
$$
Q = \bigcup_{n=0}^{\infty} \mathbb{R}^{3n}
$$
, coupling constant $g \in \mathbb{R}$

Original Hamiltonian in the particle-position representation:

$$
(H_{\text{orig}}\psi)^{(n)}(\mathbf{y}_1 \dots \mathbf{y}_n) = -\frac{\hbar^2}{2m_y} \sum_{j=1}^n \nabla_{\mathbf{y}_j}^2 \psi^{(n)}(\mathbf{y}_1 \dots \mathbf{y}_n) + nE_0 \psi^{(n)} + g\sqrt{n+1} \psi^{(n+1)}(\mathbf{y}_1 \dots \mathbf{y}_n, \mathbf{0}) + \frac{g}{\sqrt{n}} \sum_{j=1}^n \delta^3(\mathbf{y}_j) \psi^{(n-1)}(\mathbf{y}_1 \dots \hat{\mathbf{y}}_j \dots \mathbf{y}_n),
$$

is UV divergent. ($\hat{ }$ = omit, $E_0 \geq 0$ energy needed for creating y)

E.

Well-defined, "regularized" version of H

UV cut-off $\varphi \in L^2(\mathbb{R}^3)$:

$$
(H_{\text{cutoff}}\psi)(\mathbf{y}_1 \dots \mathbf{y}_n) = -\frac{\hbar^2}{2m_y} \sum_{j=1}^n \nabla_{\mathbf{y}_j}^2 \psi(\mathbf{y}_1 \dots \mathbf{y}_n) + nE_0 \psi^{(n)} +
$$

+ $g\sqrt{n+1} \sum_{i=1}^m \int_{\mathbb{R}^3} d^3 \mathbf{y} \varphi^*(\mathbf{y}) \psi(\mathbf{y}_1 \dots \mathbf{y}_n, \mathbf{y}) +$
+ $\frac{g}{\sqrt{n}} \sum_{i=1}^m \sum_{j=1}^n \varphi(\mathbf{y}_j) \psi(\mathbf{y}_1 \dots \widehat{\mathbf{y}_j} \dots \mathbf{y}_n)$

"smearing out" the x-particle with "charge distribution" $\varphi(\cdot)$

 299

Ε

化重新化重新

a s

. . . emission and absorption occurs anywhere in a ball around the x -particle $(=$ in the support of $\varphi = \frac{1}{2}$ (i)

- There is no empirical evidence that an electron has positive radius.
- **•** Positive radius leads to difficulties with Lorentz invariance

This UV problem can be solved!

[Teufel and Tumulka 1505.04847, 1506.00497]

何 ▶ ヨ ヨ ト ヨ ヨ ト

Novel idea: Interior-boundary condition

Here: boundary config = where y-particle meets x-particle; interior config = one y-particle removed 1−particle sector *x x y* 2−particle sector

Interior-boundary condition (IBC)

$$
\psi^{(n+1)}(\text{bdy}) = (\text{const.}) \psi^{(n)}
$$

links two configurations connected by the creation or annihilation of a particle.

For example, with an x -particle at 0 ,

$$
\psi^{(n+1)}(y^n, \mathbf{0}) = \frac{g m_y}{2\pi\hbar^2\sqrt{n+1}} \psi^{(n)}(y^n) .
$$

with $y^n = (\mathbf{y}_1, \dots, \mathbf{y}_n)$.

イ何 ト イヨ ト イヨ ト

 2990

Ε

A derivation of an IBC in 1d

due to [Keppeler and Sieber 1511.03071]

for simplicity in a truncated Fock space 1

$$
\mathscr{H}=\bigoplus_{n=0}\mathsf{S}_+\mathscr{H}_1^{\otimes n}=\mathbb{C}\oplus\mathscr{H}_1=\mathbb{C}\oplus\mathsf{L}^2(\mathbb{R}).
$$

If $(H_{\rm orig}\psi)^{(1)}(y) = -\frac{1}{2m}\partial_y^2\psi^{(1)}(y) + g\,\delta(y)\,\psi^{(0)}$ lies in $L^2(\mathbb{R})$, then

$$
\partial_y^2 \psi^{(1)}(y) = 2mg \delta(y) \psi^{(0)} + f(y) \text{ with } f \in L^2
$$

$$
\partial_y \phi(y) = \delta(y) \Rightarrow \text{jump} \longrightarrow, \text{ likewise } \partial_y^2 \phi(y) = \delta(y) \Rightarrow \text{kink} \longrightarrow
$$

so $\mathcal{D} = \left\{ (\psi^{(0)}, \psi^{(1)}): \partial_y \psi^{(1)}(0+) - \partial_y \psi^{(1)}(0-) = 2mg\psi^{(0)} \text{ and}$
away from 0, $\nabla^2 \psi^{(1)} \in L^2 \right\}$
and $H(\psi^{(0)}, \psi^{(1)}) = (g\psi^{(1)}(0), -\frac{1}{2m}\nabla^2 \psi^{(1)}$ away from 0)

K 御 > K 君 > K 君 > 〈君〉 ◆ ① Q ①

The basic idea of IBCs: a toy example

Consider quantum mechanics on a space Q with a boundary ∂Q .

- \bullet E.g., $\mathcal{Q} = \mathcal{Q}^{(1)} \cup \mathcal{Q}^{(2)} = \mathbb{R} \cup (\mathbb{R} \times [0, \infty))$ $\partial \mathcal{Q} = \partial \mathcal{Q}^{(2)} = \mathbb{R} \times \{0\}$
- Consider probability current vector field j on \mathcal{Q} .
- Suppose *j* has nonzero flux into ∂Q , $0 \neq \int_{\partial \mathcal{Q}} dx \, j \cdot n$ $(n =$ normal to $\partial \mathcal{Q}$)
- We want the prob that disappears at $q \in \partial \mathcal{Q}$ to reappear at $f(q) \in \mathcal{Q}$.

 $\mathcal{A} \oplus \mathcal{B}$) $\mathcal{A} \oplus \mathcal{B}$) $\mathcal{A} \oplus \mathcal{B}$

- **■** E.g., what disappears at $(x, 0) \in \partial \mathcal{Q}^{(2)}$ reappears at $f(x, 0) = x$, so $f : \partial \mathcal{Q}^{(2)} \to \mathcal{Q}^{(1)}$. In general, $f : \partial \mathcal{Q} \to \mathcal{Q}$.
- This is achieved through
	- \rightarrow an extra term in H for $\mathcal{Q}^{(1)}$
	- \rightarrow an interior-boundary condition $\psi(q) = (const.) \psi(f(q))$

IBC in the toy example

- $\psi_t:\mathcal{Q}\to\mathbb{C},\quad \psi=(\psi^{(1)},\psi^{(2)})$
- $g \in \mathbb{R}$ coupling constant
- **IBC:** $\psi^{(2)}(x,0) = -\frac{2mg}{\hbar^2} \psi^{(1)}(x)$
- **A** Hamiltonian:

$$
(H\psi)^{(1)}(x) = -\frac{\hbar^2}{2m}\partial_x^2\psi^{(1)}(x) + g \partial_y\psi^{(2)}(x,0)
$$

\n
$$
(H\psi)^{(2)}(x,y) = -\frac{\hbar^2}{2m}\left(\partial_x^2 + \partial_y^2\right)\psi^{(2)}(x,y) \text{ for } y > 0.
$$

Theorem [Teufel and Tumulka 1506.00497]

H is rigorously defined and self-adjoint on the dense-in- $L^2(\mathcal{Q})$ domain $\mathscr{D} = \left\{ (\psi^{(1)}, \psi^{(2)}) : \psi^{(n)} \in H^2(\mathcal{Q}^{(n)}) \; \forall n, \; \; \psi^{(2)} \Big|_{\mathbb{R} \times \{0\}} = -\frac{2n\mathbf{g}}{\hbar^2} \psi^{(1)} \right\}.$

Probability balance equations:

$$
\partial_t |\psi^{(2)}|^2 = -\partial_x j_x^{(2)} - \partial_y j_y^{(2)},
$$

\n
$$
\partial_t |\psi^{(1)}|^2 = -\partial_x j_x^{(1)} + \underbrace{\frac{2g}{\hbar} \text{Im} [\psi^{(1)}(x)^* \partial_y \psi^{(2)}(x, 0)]}_{= -j_y^{(2)}(x, 0) \text{ by the IBC}}
$$

IBC for particle creation model

Consider again

- x-particle at ${\bf 0}$ emits and absorbs y-particles, ${\mathscr H}={\mathscr F}_{\mathsf y}^+$
- IBC $\lim_{r \to 0+} r\psi(y^n, r\omega) = \frac{gm}{2\pi\hbar^2\sqrt{n+1}} \psi(y^n)$ for all $\omega \in \mathbb{S}^2$ (2)

$$
\bullet \ (H_{\text{IBC}}\psi)(y^n) = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\varepsilon\sqrt{n+1}}{4\pi} \int_{\mathbb{S}^2} d^2\omega \lim_{r \to 0+} \partial_r \Big(r\psi(y^n, r\omega)\Big) + nE_0\psi + \frac{\varepsilon}{\sqrt{n}} \sum_{j=1}^n \delta^3(\mathbf{y}_j) \psi(y^n \setminus \mathbf{y}_j)
$$
(3)

IBC (2) $\Rightarrow \psi$ typically diverges like $1/r=1/|\bm y_j|$ as $\bm y_j\to\bm 0.$ In fact, $\psi(y^n,r\omega) = c_{-1}(y^n)\,r^{-1} + c_0(y^n)\,r^0 + o(r^0)$ and $(2) \Leftrightarrow c_{-1}(y^n) = \frac{gm}{2\pi\hbar^2\sqrt{n+1}}\psi(y^n)$ $(3) \Leftrightarrow (H\psi)(y^n) = -\frac{\hbar^2}{2m}\nabla^2\psi + g\sqrt{\frac{2}{m}}$ $\overline{n+1} c_0(y^n)$ $+nE_0\psi+\frac{g}{\sqrt{2}}$ $\frac{\pi}{\sqrt{n}}\sum \delta^3({\bm y}_j) \, \psi({\bm y}^n \setminus {\bm y}_j)$ 2990

Rigorous absence of UV divergence in this model

- Note that $\nabla^2 \frac{1}{|\mathbf{y}|} = -4\pi \delta^3(\mathbf{y})$ (cf. Poisson eq $\nabla^2 \phi = -4\pi \rho$).
- Thus, in $\nabla^2 \psi$ the $1/r$ divergent contribution to ψ cancels the $\delta^3!$

Theorem [Lampart, Schmidt, Teufel, Tumulka 1703.04476]

On a suitable dense domain $\mathscr{D}_{\mathit{IBC}}$ of ψ s in $\mathscr H$ satisfying the IBC (2) , H_{IBC} is well defined, self-adjoint, and positive. No UV divergence!

K 御 ▶ K 唐 ▶ K 唐 ▶ ○

Why it works: flux of probability into a point

• probability current
$$
\mathbf{j}_{\mathbf{y}_j}(y^n) = \frac{\hbar}{m} \text{Im } \psi^* \nabla_{\mathbf{y}_j} \psi
$$

\n• $\frac{\partial |\psi(y^n)|^2}{\partial t} = -\sum_{j=1}^n \nabla_{\mathbf{y}_j} \cdot \mathbf{j}_{\mathbf{y}_j} + (n+1) \lim_{r \to 0^+} \underbrace{r^2 \int_{\mathbb{S}^2} d^2 \omega \omega \cdot \mathbf{j}_{\mathbf{y}_{n+1}}(y^n, r\omega)}_{\text{flux into 0 on } (n+1)\text{-sector}}$
\n• motion towards $\mathbf{0} \Rightarrow$
\n $\rho \sim 1/r^2$ as $r \to 0$
\n
\n...

 299

∍

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 \Box

Bohmian picture

- $t \mapsto Q(t) \in \mathcal{Q}$ piecewise continuous, jumps between $Q^{(n)}$ and $\mathcal{Q}^{(n+1)}$
- within $\mathcal{Q}^{(n)}$, Bohm's law of motion

 $\frac{dQ}{dt} =$ \hbar $\frac{\hbar}{m_B}$ Im $\frac{\nabla \psi^{(n)}}{\psi^{(n)}}$ $\frac{\varphi}{\psi^{(n)}}(Q(t))$

with IBC:

- when $Q(t)\in \mathcal{Q}^{(n)}$ reaches $\textbf{\textit{y}}_{j}=\textbf{0}$, it jumps to $({\sf y}^n\setminus {\sf y}_j)\in{\cal Q}^{(n-1)}$
- emission of new y-particle at 0 at random time with random direction
- with UV cut-off:
- emission and absorption occurs anywhere in a ball around $\mathbf{0}$ (= in

the support of φ

- Now suppose that y-particles are relativistic and have spin $\frac{1}{2}$.
- A free y-particle is described by the Dirac equation

$$
i c \hbar \gamma^{\mu} \partial_{\mu} \psi = mc^2 \psi
$$

or

$$
i\hbar\frac{\partial\psi}{\partial t} = -ic\hbar\alpha\cdot\nabla\psi + mc^2\beta\psi
$$

- $\mathscr{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}^4)$ for 1 particle
- Henceforth, $\hbar = 1 = c$.

 2990

AD * * # * * # * *

Example of a reflecting boundary condition for the Dirac equation

- $\mathcal{Q} = \mathbb{R}^3_{>} = \big\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 \geq 0 \big\}$ spatial domain with bdry $\psi: \mathbb{R}_t \times \mathbb{R}^3_{>} \to \mathbb{C}^4$
- current $j^\mu = \overline{\psi} \gamma^\mu \psi$ or $j^0 = |\psi|^2, \ \ j^i = \psi^\dagger \alpha^i \psi$
- Dirac equation $i\gamma^{\mu}\partial_{\mu}\psi = m\psi$ or $i\partial_{t}\psi = (-i\boldsymbol{\alpha}\cdot\nabla + \beta m)\psi$
- α, β, γ Dirac matrices; $\quad \alpha^i = \gamma^0 \gamma^i, \ \beta = \gamma^0$ self-adjoint
- boundary condition (BC) $(\gamma^3 i)\psi(\mathsf{x}_1,\mathsf{x}_2,0) = 0$ or $\alpha^3\psi = i\beta\psi$

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in $L^2(\mathbb{R}^3_\gt,\mathbb{C}^4)$, $\mathscr{D} = \{ \psi \in H^1(\mathbb{R}^3_\gt, \mathbb{C}^4) : (\gamma^3 - i)\psi \big|_{\partial \mathcal{Q}} = 0 \}.$

(BC) ensures there is no current into the boundary:

$$
j^{3}(x_{1}, x_{2}, 0) = \psi^{\dagger} \alpha^{3} \psi = \frac{1}{2} \psi^{\dagger} (\alpha^{3} \psi) + \frac{1}{2} (\alpha^{3} \psi)^{\dagger} \psi
$$

\n
$$
\stackrel{\text{(BC)}}{=} \frac{1}{2} \psi^{\dagger} (i \beta \psi) + \frac{1}{2} (i \beta \psi)^{\dagger} \psi = \frac{i}{2} \psi^{\dagger} \beta \psi - \frac{i}{2} \psi^{\dagger} \beta \psi = 0
$$

KOD KAPIKIEN E VAG

BC specifies half of the components

 $\left(\mathsf{BC}\right) \, (\gamma^3 - i) \psi = 0$ on $\partial \mathcal{Q}$

- γ^3 is unitarily diagonalizable with eigenvalues $\pm i$, each with multiplicity 2
- So, $\gamma^3 i$ is $-2i$ times a 2d orthogonal projection.
- So, $(\gamma^3 i)\psi = 0$ sets two components of ψ to 0 and leaves two components arbitrary.
- For comparison, the reflecting boundary conditions for the Laplacian,

 $\psi(x_1, x_2, 0) = 0$ (Dirichlet) $\partial_3\psi(x_1, x_2, 0) = 0$ (Neumann)

 $(\alpha + \beta \partial_3)\psi(x_1, x_2, 0) = 0$ (Robin)

each set one component of the 2d pair $(\psi, \partial_3 \psi)$ to 0 and leave one component arbitrary.

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 │ ◆) Q Q →

Example of an interior-boundary condition for the Dirac equation

- configuration space $\mathcal{Q} = \mathcal{Q}^{(0)} \cup \mathcal{Q}^{(1)} = \{\emptyset\} \cup \mathbb{R}^3_>$
- mini Fock space $\mathscr{H}=\mathscr{H}^{(0)}\oplus\mathscr{H}^{(1)}=\mathbb{C}\oplus L^2(\mathbb{R}^3_>,\mathbb{C}^4)$
- **A** Hamiltonian

$$
(H\psi)^{(0)} = \int_{\mathbb{R}^2} dx_1 dx_2 N(x_1, x_2)^{\dagger} \psi^{(1)}(x_1, x_2, 0)
$$

$$
(H\psi)^{(1)}(\mathbf{x}) = -i\alpha \cdot \nabla \psi^{(1)}(\mathbf{x}) + m\beta \psi^{(1)}(\mathbf{x}), \quad x_3 > 0
$$

with $\mathcal{N}(x_1,x_2)=e^{-x_1^2-x_2^2}(1,0,1,0)$ in the Weyl representation

- $(\gamma^3 i)\psi^{(1)}(x_1, x_2, 0) = (\gamma^3 i)N(x_1, x_2)\psi^{(0)}$ (IBC)
- specifies two components of $\psi^{(1)}$ on $\partial\mathcal{Q}$ and leaves two arbitrary
- $(\gamma^3 i)\psi^{(1)}(x_1, x_2, 0) = 0$ reflecting BC to compare to.

Theorem [Schmidt, Teufel, Tumulka 1811.02947]

 $\left\{ \bigoplus_k \lambda_k \in \mathbb{R} \right\} \rightarrow \left\{ \bigoplus_k \lambda_k \right\}$

 QQ

∍

H is rigorously defined and self-adjoint on $\{(\psi^{(0)}, \psi^{(1)}) \in \mathbb{C} \oplus H^1(\mathbb{R}^3)$, $\mathbb{C}^4)$: (IBC) }.

Model of creation of Dirac particles in 1d

[Lienert and Nickel 1808.04192]

- particles move in \mathbb{R}^1 , split or coalesce according to $x \leq x + x$
- Dirac eq in 1d: spin space \mathbb{C}^2 , $\gamma^0 = \sigma_1$, $\gamma^1 = \sigma_1 \sigma_3$.
- (truncated) Fock space $\mathscr{H}=\bigoplus_{n=0}^{n_{\text{max}}} S_{-} L^{2}(\mathbb{R}^{1}, \mathbb{C}^{2})^{\otimes n}$

M. Lienert | Lukas Nickel

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 Ω

- For simplicity, let $n_{\text{max}} = 2$, $m = 0$, ignore the $n = 0$ sector, so
- $\mathscr{H}=\mathscr{H}^{(1)}\oplus\mathscr{H}^{(2)}.$ $(H\psi)^{(1)}(x) = -i\alpha^{1}\partial_{x}\psi^{(1)}(x) + N(x)^{\dagger}\psi^{(2)}(x,x)$ $(H\psi)^{(2)}(x_1, x_2) = (-i\alpha_1^1 \partial_1 - i\alpha_2^1 \partial_2)\psi^{(2)}(x_1, x_2)$ with $N(x)$ a certain 4×2 -matrix.
- **IBC** $\psi_{-+}^{(2)}(x, x) e^{i\theta} \psi_{+-}^{(2)}(x, x) = B \psi_{-}^{(1)}(x)$

with B a certain 1×2 -matrix.

Theorem [Lienert and Nickel 1808.04192]

 H_{IBC} is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the multi-time equations.

 299

∍

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of $(H^{\circ}, \mathscr{D}(H^{\circ})) = (-\nabla^2, C_c^{\infty}(\mathbb{R}^3 \setminus {\bf{0}}, \mathbb{C})).$

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of $(H^{\circ}, \mathscr{D}(H^{\circ})) = (-i\alpha \cdot \nabla + m\beta, C_{c}^{\infty}(\mathbb{R}^{3} \setminus \{\mathbf{0}\}, \mathbb{C}^{4})),$ the free Dirac Hamiltonian.

メ御 メイ君 メイ君 メー

 Ω

This has consequences for IBCs:

Fact

The non-relativistic H_{IBC} in $\mathbb{C}\oplus \mathsf{L}^2(\mathbb{R}^3)$ with source at $\mathbf 0$ is a self-adjoint extension of the operator $H^{\circ}(\psi^{(0)} = 0, \psi^{(1)}) = (0, -\frac{\hbar^2}{2m}\nabla^2\psi^{(1)})$ defined on $\mathscr{D}(H^{\circ}) = \{0\} \oplus C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C}).$

whereas

Theorem **[Henheik and Tumulka 2006.16755]** All self-adjoint extensions in $\mathbb{C}\oplus L^2(\mathbb{R}^3,\mathbb{C}^4)$ of the relativistic operator $H^{\circ}(\psi^{(0)}=0,\psi^{(1)})=(0,(-i\alpha\cdot \nabla+m\beta)\psi^{(1)})$ defined on $\mathscr{D}^{\circ} = \{0\} \oplus \mathcal{C}^{\infty}_{c}(\mathbb{R}^3 \setminus \{\boldsymbol{0}\}, \mathbb{C}^4)$ involve no particle creation and are the free Dirac operator on the upper sector.

CONVIRTING A GRANICAL

 Ω

In short, there is no IBC Hamiltonian for Dirac particles and a point source in 3d, unless...

Theorem [Henheik and Tumulka 2006.16755]

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

 Ω

Let $H^{\circ} = -i\boldsymbol{\alpha}\cdot\nabla + m\beta + q/|\textbf{y}|$ with $\sqrt{3}/2 < |q| < 1$ be defined on $\mathscr{D}^{\circ}=\{0\}\oplus \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3}\setminus\{\boldsymbol{0}\},\mathbb{C}^{4}).$ Set $B:=\sqrt{1-q^{2}};$ note that $0 < B < \frac{1}{2}$. There is a self-adjoint extension (H, \mathscr{D}) of $(H^{\circ}, \mathscr{D}^{\circ})$ with **D** The sectors $\mathbb{C} \oplus L^2(\mathbb{R}^3, \mathbb{C}^4)$ do not decouple (i.e., creation occurs). **2** For every $\psi \in \mathcal{D}$, the upper sector is of the form $\psi^{(1)}(\mathbf{y})=c_{-B}\,f_-\big(\frac{\mathbf{y}}{|\mathbf{y}|}\big)\,|\mathbf{y}|^{-B}+c_B\,f_+\big(\frac{\mathbf{y}}{|\mathbf{y}|}\big)\,|\mathbf{y}|^B+o(|\mathbf{y}|^{1/2})$) (5) as $\textbf{y}\rightarrow\textbf{0}$ with $c_{-B},c_B\in\mathbb{C}$ and fixed functions $f_\pm:\mathbb{S}^2\rightarrow\mathbb{C}^4.$ \bullet Every $\psi \in \mathscr{D}$ obeys IBC $\hspace{0.2cm} c_{-B} = g \: \psi^{(0)}$ Φ For $\psi \in \mathscr{D}, \quad (H\psi)^{(0)} = \tilde{g} \; c_B$ $(H\dot{\psi})^{(1)}(\mathbf{y}) = \overline{(-i\alpha \cdot \nabla + m\beta + \frac{q}{|\mathbf{y}|})\psi^{(1)}(\mathbf{y})}$ $(\mathbf{y} \neq \mathbf{0})$ with constants $g, \tilde{g} = 4B(1+q)g^*$.

[Tumulka 0708.0070]

According to general relativity, the curved space-time created by a point with mass $M > 0$ and charge $Q > M$ is the Reissner-Nordström geometry

$$
ds^2 = \lambda(r) dt^2 - \frac{1}{\lambda(r)} dr^2 - r^2 d\vartheta^2 - r^2 \sin^2 \vartheta d\varphi^2
$$

with $\lambda(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$ $\frac{Q^2}{r^2}$. Its metric is static in coordinates $(t, r, \vartheta, \varphi)$ and has singularity at $r = 0$.

- Dirac spin spaces form a vector bundle S with fibers $S_\mathsf{x} \cong \mathbb{C}^4.$ α
- The metric defines a covariant derivative on S .
- $\mathscr{H}_1 = L^2$ sections of S over $\Sigma = \{t = \text{const.}\}.$ \mathbf{c} of the section, we have \mathbf{c}
- Let H_1 be the free Dirac operator (depends on the curved metric). 1.1

q,m

 $_{Q,M}$

emission/[absor](#page-23-0)pt[ion](#page-25-0) [of](#page-23-0) [a pa](#page-24-0)[rti](#page-25-0)[cle oc](#page-0-0)[curs](#page-0-1) [at a](#page-0-0) [singl](#page-0-1)[e poi](#page-0-0)[nt in](#page-0-1) space (or world line in

IBC works with a space-time singularity

Theorem [Henheik, Poudyal, Tumulka 2409.00677]

Let $H^{\circ} = 0 \oplus H_1$ on $\mathscr{D}^{\circ} = \{0\} \oplus C_c^{\infty}(\Sigma \setminus \{\mathbf{0}\}, \mathcal{S})$. There is a self-adjoint extension (H,\mathscr{D}) of $(H^{\circ},\mathscr{D}^{\circ})$ with

■ The sectors $\mathbb{C} \oplus L^2(\Sigma,S)$ do not decouple (i.e., creation occurs).

2 For every $\psi \in \mathcal{D}$, the upper sector is of the form

$$
\psi^{(1)}(r,\vartheta,\varphi)=c(\vartheta,\varphi)\,r^{-1/2}+\mathcal{O}(r^{1/2})\quad\text{as}\;r\to0.
$$

3 Every $\psi \in \mathscr{D}$ obeys IBC

 $\frac{1}{2}(I-\beta) \, c(\vartheta, \varphi) = \mathit{f}_{-}(\vartheta, \varphi) \, \psi^{(0)}$

with fixed functions $f_{\pm}:\mathbb{S}^2\to\mathbb{C}^4.$ Φ For $\psi \in \mathscr{D}$, $(H\psi)^{(0)} = \langle f_+, \mathsf{c} \rangle_{L^2(\mathbb{S}^2, \mathbb{C}^4)}$ $(H\psi)^{(1)}=H_1\psi^{(1)}\quad\text{ for }r>0$

Bipul Poudyal

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B}$

 Ω

Problem:

• Hamiltonian involving particle creation and annihilation is usually UV divergent, and thus ill defined

New approach:

- \bullet IBC = interior-boundary condition
- allows a new way of defining a Hamiltonian H_{IBC}
- **•** provides rigorous definition of a self-adjoint H_{IBC} , at least for some scenarios (and we hope in many)
- no need for discretizing space, smearing out particles over positive radius, or other UV cut-off
- no need for renormalization, or taking limit of removing the UV cut-off
- makes use of particle-position representation

 $\left\{ \left\vert \left\langle \left\langle \left\langle \varphi\right\rangle \right\rangle \right\rangle \right\langle \left\langle \left\langle \varphi\right\rangle \right\rangle \$

 Ω

Thank you for your attention

メロトメ 倒 トメ きトメ きトー

 $E = \Omega$