Typicality Reasoning in Quantum Statistical Mechanics

Roderich Tumulka

PSA meeting New Orleans Session on typicality chaired by Isaac Wilhelm 17 November 2024

Main reference: http://arxiv.org/abs/2210.10018

Image: A test in te

The general concept of typicality

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

What is a typicality statement?

A statement asserting that "most" things A have a property P.

Example

Most numbers in [0,10] have "random-looking" sequence of decimal digits. (Even if they are not random, for example π .)

Example

Most points X on the unit sphere in \mathbb{R}^n with large *n* have components $(X_1, X_2, ..., X_n)$ with statistical distribution close to Gaussian distribution with mean 0 and width $1/\sqrt{n}$.

Applications in physics

A = phase point $X = (\boldsymbol{Q}_1, \dots, \boldsymbol{Q}_N, \boldsymbol{P}_1, \dots, \boldsymbol{P}_N)$ in classical mechanics

- A = wave function Ψ in quantum mechanics
- $A = \text{configuration } Q = (\boldsymbol{Q}_1, \dots, \boldsymbol{Q}_N)$ in Bohmian mechanics
- A = Hamiltonian H (random matrix theory) [von Neumann 1929, Wigner 1955]

(日) ・ モン ・ ヨン

- intuitively: uniform, natural, invariant under symmetries or time evolution; "volume" or "size"
- Usually given by the mathematical concept of "measure" (a number ≥ 0 for every set, like a probability distribution), but maybe some axioms (additivity?) can be relaxed.
- Sometimes uniform over all possibilities, sometimes only over admitted possibilities.

Example: in classical statistical mechanics, uniform over a small region Γ_{ν} in phase space, corresponding to macro state ν .

- **(**) Because that is what thermal equilibrium means [e.g., X or Ψ]
- Because of the past hypothesis (or other laws of nature) [e.g., X or Ψ or Q]
- Because the typical behavior needs no further principles for its explanation [e.g., H or Q]
- Because the typical behavior is our first guess [e.g., H]

1) Thermal equilibrium in classical mechanics

- energy shell in phase space Γ : $\Gamma_{\rm mc} = \{ X \in \Gamma : E - \Delta E < H(X) \le E \}$
- partition $\Gamma_{\rm mc}$ into "macro sets" Γ_{ν} corresponding to different macro states ν ,

$$\Gamma_{\rm mc} = \bigcup_{\nu} \Gamma_{\nu}$$

 \bullet usually, one cell $\Gamma_{\rm eq}$ has most of the volume,

$$\frac{\text{vol}\,\Gamma_{\rm eq}}{\text{vol}\,\Gamma_{\rm mc}}\approx 1.$$

It is the nature of thermal equilibrium that most phase points in $\Gamma_{\rm mc}$ look macroscopically the same.

1) Thermal equilibrium in quantum mechanics

[Goldstein et al. Physical Review E and arxiv.org/abs/0911.1724]

•
$$H = \sum_{\alpha} E_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$$

- energy shell $\mathscr{H}_{mc} = \operatorname{span} \left\{ \phi_{\alpha} : E \Delta E < E_{\alpha} \leq E \right\}$
- orthogonal decomposition into subspaces $\mathscr{H} = \bigoplus_{\nu} \mathscr{H}_{\nu}$ ("macro spaces," each of high dimension) [von Neumann 1929, Lebowitz 1993]
- notation $P_{
 u} :=$ projection operator to $\mathscr{H}_{
 u}$
- usually, one of the \mathscr{H}_{ν} has most dimensions, " $u = \mathrm{eq}$ ":

$$\frac{\text{dim}\,\mathscr{H}_{\rm eq}}{\text{dim}\,\mathscr{H}_{\rm mc}}\approx 1$$

<u>Def:</u> $\psi \in$ macroscopic thermal equilibrium (MATE) : $\Leftrightarrow \|P_{eq}\psi\|^2 \approx 1$

Fact: Most ψ lie in MATE.

 $u_{
m mc}({\sf MATE}) \approx 1$ with $u_{
m mc}$ the uniform normalized measure on the unit sphere $\mathbb{S}(\mathscr{H}_{
m mc})$.

伺 と く ヨ と く ヨ と

э

2) The past hypothesis as demanding typicality

[Albert 2000, Goldstein et al. 1903.11870]

Past hypothesis (maybe a law of nature?)

(classical) The initial phase point X_0 of the universe lies in a certain subset Γ_0 of the phase space Γ of the universe and is typical in Γ_0 .

(quantum) The initial wave function Ψ_0 of the universe lies in a certain subspace \mathscr{H}_0 of the Hilbert space \mathscr{H} of the universe and is typical in $\mathbb{S}(\mathscr{H}_0)$.

- Suggestion: $\Gamma_0 = \Gamma_{\nu_0}$ for a certain low-entropy macro state ν_0 . Or [Penrose 1979] $\Gamma_0 = \{$ states with zero Weyl curvature $\}$. Similarly \mathscr{H}_0 .
- Boltzmann's insight: Most X ∈ Γ_{ν0} evolve to higher and higher entropy S(X_t) = k_B log vol Γ_{ν(Xt}). This explains the thermodynamic arrow of time (2nd law).
- "is typical" = looks as if random (for our purposes here: can be taken to be random)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- The usual idea of "probability" involves the possibility to repeat.
- Thus, for things we see only once (e.g., the universe as a whole), "typicality" is the more fitting concept, also because the typical thing A need not be "truly random" (think of π).
- If we can repeat, then we may be able to observe whether the actual distribution is uniform.
 If we can't repeat, we may only have theoretical reasons for selecting a measure.

Three recent typicality theorems in quantum statistical mechanics

물에 비용하다.

æ

Result 1: Distribution typicality

- For any experiment with random outcome Z on a quantum system with wave function Ψ , $\mathbb{P}(Z = z) = \langle \Psi | E_z | \Psi \rangle$ for some POVM E_z .
- POVM = positive-operator-valued measure = "unsharp observable"
- E_z positive operators with $\sum_z E_z = I$
- special case "ideal observable": $E_z =$ projection operator

Theorem [Reimann 0810.3092, Teufel & Tumulka & Vogel 2307.15624]

Suppose dim \mathscr{H}_0 is large, and the number of possible z's is not too large. Then most $\Psi \in \mathbb{S}(\mathscr{H}_0)$ have nearly the same $\langle \Psi | E_z | \Psi \rangle$ (for all z).

Consequence for the past hypothesis (PH) [Chen & Tumulka 2410.16860]

 $\label{eq:PH} \begin{array}{l} PH \Rightarrow empirical observations can't distinguish between different <math display="inline">\Psi$'s. Empirical observations yield almost zero information about the actual $\Psi. \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Result 2: Macroscopic appearance

- Generic Ψ are superpositions of contributions P_νΨ from several macro spaces ℋ_ν.
- To describe the macroscopic appearance of Ψ, we say how big the contribution from each ℋ_ν is, ||P_νΨ||².

• <u>Def:</u> macro history $(\nu, t) \mapsto \|P_{\nu}\Psi_t\|^2$

[Bartsch & Gemmer 0902.0927, Reimann 1805.07085]

Most Ψ₀ ∈ S(ℋ₀) have nearly the same macro history for a long time.

Theorem [Teufel & Tumulka & Vogel 2210.10018]

Fix T > 0, and let dim \mathscr{H}_0 be sufficiently large. Then for every $t \in [0, T]$, most $\Psi_0 \in \mathbb{S}(\mathscr{H}_0)$, and all ν ,

$$|P_{\nu}\Psi_t||^2 \approx \mathbb{E}_{\Psi_0} ||P_{\nu}\Psi_t||^2.$$

A kind of macroscopic determinism.

프 () () 프 () (

Result 2: Numerical example

< ∃ >

æ

Result 3: Fraction equilibrium = generalized normal equilibrium

- Most $\Psi \in \mathbb{S}(\mathscr{H})$ have $\|P_{\nu}\Psi\|^2 \approx d_{\nu}/d$ (the "normal histogram").
- Von Neumann 1929 proposed to take this as the definition of thermal equilibrium. But it is not really a *thermal* equilibrium, it is a different kind of equilibrium ("normal equilibrium").
- But it tends to occur in the long run:

Theorem on normal equilibrium [von Neumann 1929, Goldstein et al. 0907.0108]

For most orthonormal bases *B*, if *H* has *B* as its eigenbasis (and under some technical conditions), every $\Psi \in \mathbb{S}(\mathscr{H})$ satisfies for most $t \in [0, \infty)$ that

$$\|P_{\nu}\Psi_t\|^2 pprox rac{d_{
u}}{d}$$

Let us move away from the unrealistic assumption that B is uniformly distributed: Every initial macro state ν_0 has a typical long-time histogram:

Theorem on fraction equilibrium [Teufel & Tumulka & Vogel 2210.10018]

Consider any fixed non-random H (under some technical assumptions) and suppose dim \mathscr{H}_0 is large. Then most $\Psi_0 \in \mathbb{S}(\mathscr{H}_0)$ are such that for most $t \in [0, \infty)$

 $\|P_{\nu}\Psi_t\|^2 \approx \mathbb{E}_{\Psi_0}\mathbb{E}_t\|P_{\nu}\Psi_t\|^2.$

Result 3: Numerical example

< ∃⇒

æ

Typical Ψ vs typical H

- Reasons 1) and 2) [thermal equilibrium and laws] vs reasons 3) and 4) [explanation and guessing]
- Typical $\Psi \in \mathbb{S}(\mathscr{H}_{mc})$ is empirically wrong since the universe is not in thermal equilibrium. But typical $\Psi \in \mathbb{S}(\mathscr{H}_0)$ (PH) is right, as far as we can tell.
- *H* with typical eigenbasis *B* is empirically wrong:
 - ultrafast thermalization [Goldstein et al. 1307.0572]
 - violates local conservation of particle number/ kinetic energy/momentum/angular momentum
 - super-long distance interaction (realistic: 1/r potential)
 - super-many particle interaction (realistic: pair interaction)
- The actual *H* of the universe may have a simple formula (in terms of Lagrangian?) from a suitable perspective.
- But in practice, the effective *H* of a system may be very complicated. It may thus be appropriate to model *H* by a random matrix (typical *H*).
- Leads to the question: which measure for H?

伺い イヨン イヨン ニヨ

Thank you for your attention

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →