Typicality Reasoning in Quantum Statistical **Mechanics**

Roderich Tumulka

PSA meeting New Orleans Session on typicality chaired by Isaac Wilhelm 17 November 2024

Main reference: <http://arxiv.org/abs/2210.10018>

ミメ モチャー

后

The general concept of typicality

イロメ イ団メ イモメ イモメー

 $E = \Omega Q$

What is a typicality statement?

A statement asserting that "most" things A have a property P.

Example

Most numbers in [0,10] have "random-looking" sequence of decimal digits. (Even if they are not random, for example π .)

Example

Most points X on the unit sphere in \mathbb{R}^n with large n have components $(X_1, X_2, ..., X_n)$ with statistical distribution close to Gaussian distribution with mean 0 and width $1/\sqrt{n}$.

Applications in physics

 $A =$ phase point $X = (Q_1, \ldots, Q_N, P_1, \ldots, P_N)$ in classical mechanics

- $A =$ wave function Ψ in quantum mechanics
- $A =$ configuration $Q = (Q_1, \ldots, Q_N)$ in Bohmian mechanics
- $A =$ Hamiltonian H (random matrix theory) [von Neumann 1929, Wigner 1955]

個→ イミ > イミ >

- **•** intuitively: uniform, natural, invariant under symmetries or time evolution; "volume" or "size"
- Usually given by the mathematical concept of "measure" (a number ≥ 0 for every set, like a probability distribution), but maybe some axioms (additivity?) can be relaxed.
- Sometimes uniform over all possibilities, sometimes only over admitted possibilities.

Example: in classical statistical mechanics, uniform over a small region Γ_{ν} in phase space, corresponding to macro state ν .

医下环医下下 医心

- **1** Because that is what thermal equilibrium means [e.g., X or Ψ]
- ² Because of the past hypothesis (or other laws of nature) [e.g., X or Ψ or Q]
- ³ Because the typical behavior needs no further principles for its explanation [e.g., H or Q]
- \bullet Because the typical behavior is our first guess [e.g., H]

ヨメ マヨメー

G.

1) Thermal equilibrium in classical mechanics

- energy shell in phase space Γ: $\Gamma_{\mathrm{mc}} = \big\{ X \in \Gamma : E - \Delta E < H(X) \leq E \big\}$
- **•** partition Γ_{mc} into "macro sets" Γ_{ν} corresponding to different macro states ν ,

$$
\Gamma_{\rm mc}=\bigcup_\nu\Gamma_\nu
$$

• usually, one cell Γ_{eq} has most of the volume,

$$
\frac{\text{vol }\Gamma_{\text{eq}}}{\text{vol }\Gamma_{\text{mc}}}\approx 1.
$$

• Def: A system is in thermal equilibrium :⇔ its phase point lies in the set Γ_{eq} .

It is the nature of thermal equilibrium that most phase points in Γ_{mc} look macroscopically the same.

一本 手の

1) Thermal equilibrium in quantum mechanics

[Goldstein et al. Physical Review E and arxiv.org/abs/0911.1724]

•
$$
H = \sum_{\alpha} E_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|
$$

- energy shell $\mathscr{H}_{\!{\rm mc}}=$ span $\big\{\phi_{\alpha}:E-\Delta E< E_{\alpha}\leq E\big\}$
- orthogonal decomposition into subspaces $\mathscr{H}=\bigoplus_{\nu}\mathscr{H}_{\nu}$ ("macro spaces," each of high dimension) [von Neumann 1929, Lebowitz 1993]
- notation P_{ν} := projection operator to \mathscr{H}_{ν}
- **•** usually, one of the \mathcal{H}_{ν} has most dimensions, " $\nu = \text{eq}$ ":

$$
\frac{\text{dim}\,\mathscr{H}_{\rm eq}}{\text{dim}\,\mathscr{H}_{\rm mc}}\approx 1
$$

<u>Def:</u> $\psi \in$ macroscopic thermal equilibrium (MATE) $\psi \in \|P_{\text{eq}} \psi\|^2 \approx 1$

Fact: Most ψ lie in MATE.

 $u_{\rm mc}$ (MATE) ≈ 1 with u_{mc} the uniform normalized measure on the unit sphere $\mathcal{S}(\mathcal{H}_{\text{mc}})$.

K 御 ▶ K 澄 ▶ K 澄 ▶ │ 澄

2) The past hypothesis as demanding typicality

[Albert 2000, Goldstein et al. 1903.11870]

Past hypothesis (maybe a law of nature?)

(classical) The initial phase point X_0 of the universe lies in a certain subset Γ_0 of the phase space Γ of the universe and is typical in Γ_0 .

(quantum) The initial wave function Ψ_0 of the universe lies in a certain subspace \mathcal{H}_0 of the Hilbert space $\mathcal H$ of the universe and is typical in $\mathbb{S}(\mathscr{H}_0)$.

- Suggestion: $\Gamma_0 = \Gamma_{\nu_0}$ for a certain low-entropy macro state ν_0 . Or [Penrose 1979] $\Gamma_0 = \{$ states with zero Weyl curvature}. Similarly \mathscr{H}_0 .
- Boltzmann's insight: Most $X\in \mathsf{\Gamma}_{\nu_0}$ evolve to higher and higher entropy $\mathcal{S}(X_t)=k_\text{B}$ log vol $\mathsf{\Gamma}_{\nu(X_t)}.$ This explains the thermodynamic arrow of time (2nd law).
- \bullet "is typical" = looks as if random (for our purposes here: can be taken to be random)

イロン イ何ン イヨン イヨン・ヨー

- The usual idea of "probability" involves the possibility to repeat.
- Thus, for things we see only once (e.g., the universe as a whole), "typicality" is the more fitting concept, also because the typical thing A need not be "truly random" (think of π).
- If we can repeat, then we may be able to observe whether the actual distribution is uniform. If we can't repeat, we may only have theoretical reasons for selecting a measure.

ヨメ メヨメー

∍

Three recent typicality theorems in quantum statistical mechanics

 \leftarrow \Box

경제 지경에서

重

Result 1: Distribution typicality

- \bullet For any experiment with random outcome Z on a quantum system with wave function Ψ , $\mathbb{P}(Z = z) = \langle \Psi | E_z | \Psi \rangle$ for some POVM E_z .
- \bullet POVM = positive-operator-valued measure $=$ "unsharp observable"
- E_z positive operators with $\sum_z E_z = I$
- **•** special case "ideal observable": E_z = projection operator

Theorem [Reimann 0810.3092, Teufel & Tumulka & Vogel 2307.15624]

Suppose dim \mathcal{H}_0 is large, and the number of possible z's is not too large. Then most $\Psi \in \mathbb{S}(\mathscr{H}_0)$ have nearly the same $\langle \Psi | E_z | \Psi \rangle$ (for all z).

Consequence for the past hypothesis (PH) [Chen & Tumulka 2410.16860]

 $PH \Rightarrow$ empirical observations can't distinguish between different Ψ 's. Empirical observations yield almost zero information about the actual Ψ.

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{B}$

Result 2: Macroscopic appearance

- **•** Generic Ψ are superpositions of contributions P_{ν} Ψ from several macro spaces \mathscr{H}_{ν} .
- \bullet To describe the macroscopic appearance of Ψ , we say how big the contribution from each \mathscr{H}_ν is, $\|P_\nu \Psi\|^2$.

<u>Def:</u> macro history $(\nu, t) \mapsto \|P_\nu\Psi_t\|^2$

 2990

Ξ

[Bartsch & Gemmer 0902.0927, Reimann 1805.07085]

• Most $\Psi_0 \in \mathbb{S}(\mathscr{H}_0)$ have nearly the same macro history for a long time.

Theorem [Teufel & Tumulka & Vogel 2210.10018]

Fix $T > 0$, and let dim \mathcal{H}_0 be sufficiently large. Then for every $t \in [0, T]$, most $\Psi_0 \in \mathbb{S}(\mathcal{H}_0)$, and all ν ,

$$
||P_{\nu}\Psi_t||^2 \approx \mathbb{E}_{\Psi_0}||P_{\nu}\Psi_t||^2.
$$

A kind of macroscopic determinism.

おす 国家 し

Ε

Result 2: Numerical example

 \leftarrow

おす 周末

Ξ

重

Result 3: Fraction equilibrium $=$ generalized normal equilibrium

- Most $\Psi \in \mathbb{S}(\mathscr{H})$ have $||P_\nu \Psi||^2 \approx d_\nu/d$ (the "normal histogram").
- Von Neumann 1929 proposed to take this as the definition of thermal equilibrium. But it is not really a thermal equilibrium, it is a different kind of equilibrium ("normal equilibrium").
- But it tends to occur in the long run:

Theorem on normal equilibrium [von Neumann 1929, Goldstein et al. 0907.0108]

For most orthonormal bases B , if H has B as its eigenbasis (and under some technical conditions), every $\Psi \in \mathbb{S}(\mathscr{H})$ satisfies for most $t \in [0,\infty)$ that

$$
||P_{\nu}\Psi_t||^2 \approx \frac{d_{\nu}}{d}.
$$

4 重 ド 4 重 ドー

∍

Let us move away from the unrealistic assumption that B is uniformly distributed: Every initial macro state ν_0 has a typical long-time histogram:

Theorem on fraction equilibrium [Teufel & Tumulka & Vogel 2210.10018]

Consider any fixed non-random H (under some technical assumptions) and suppose dim \mathcal{H}_0 is large. Then most $\Psi_0 \in \mathbb{S}(\mathcal{H}_0)$ are such that for most $t \in [0, \infty)$

$$
||P_{\nu}\Psi_t||^2 \approx \mathbb{E}_{\Psi_0}\mathbb{E}_t||P_{\nu}\Psi_t||^2.
$$

医尿囊的

Result 3: Numerical example

 \leftarrow

4. 돈 »

重

Typical Ψ vs typical H

- Reasons 1) and 2) [thermal equilibrium and laws] vs reasons 3) and 4) [explanation and guessing]
- Typical $\Psi \in \mathbb{S}(\mathscr{H}_{\mathrm{mc}})$ is empirically wrong since the universe is not in thermal equilibrium. But typical $\Psi \in \mathbb{S}(\mathcal{H}_0)$ (PH) is right, as far as we can tell.
- \bullet H with typical eigenbasis B is empirically wrong:
	- ultrafast thermalization [Goldstein et al. 1307.0572]
	- violates local conservation of particle number/ kinetic energy/momentum/angular momentum
	- super-long distance interaction (realistic: $1/r$ potential)
	- super-many particle interaction (realistic: pair interaction)
- \bullet The actual H of the universe may have a simple formula (in terms of Lagrangian?) from a suitable perspective.
- \bullet But in practice, the effective H of a system may be very complicated. It may thus be appropriate to model H by a random matrix (typical H).
- Leads to the question: which measure for H?

 $\mathbf{A} = \mathbf{A} + \mathbf$

Thank you for your attention

メロトメ 倒 トメ きトメ きトー

 $E = \Omega$