C. Hainzl, M. Loss General pairing mechanisms in the BCS-theory of superconductivity [arXiv:1603.07659]
|
A. Deuchert, A. Geisinger, C. Hainzl, M. Loss Persistence of translational symmetry in the BCS model with radial pair interaction [arXiv:1612.03303]
|
G. Bräunlich, C. Hainzl, R. Seiringer Bogolubov-Hartree-Fock theory for strongly interacting fermions in the low density limit Math. Phys. Anal. Geom. 19, Art. 13 (2016) [arXiv:1511.08047]
|
C. Hainzl, R. Seiringer The BCS functional of superconductivity and its mathematical properties J. Math. Phys. 57, 021101 (2016) [arXiv:1511.01995]
|
R. Frank, C. Hainzl, B. Schlein, R. Seiringer Incompatibility of time-dependent Bogoliubov-de-Gennes and Ginzburg-Landau equations Lett. Math. Phys. 106, 913-923 (2016) [arXiv:1504.05885]
|
C. Hainzl, J. Seyrich Comparing the full time-dependent Bogoliubov--de-Gennes equations to their linear approximation: A numerical investigation Eur. Phys. J. B 89, No. 5 (2016) [arXiv:1504.05881]
|
R. Frank, C. Hainzl,R. Seiringer, J. P. Solovej The external field dependence of the BCS critical temperature Commun. Math. Phys. 342, 189 (2016) [arXiv:1410.2352]
|
A. Deuchert, C. Hainzl, R. Seiringer Note on a Family of Monotone Quantum Relative Entropies Lett. Math. Phys. 105, 1449 (2015) [arXiv:1502.07205]
|
T. Chen, C. Hainzl, N. Pavlovic, R. Seiringer Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti Commun. Pure Appl. Math. 68, 1845 (2015) [arXiv:1307.3168]
|
G. Bräunlich, C. Hainzl, R. Seiringer Translation-invariant quasi-free states for fermionic systems and the BCS approximation Rev. Math. Phys. 26, 7 (2014), 1450012. [arxiv.org/1305.5135 ]
|
T. Chen, C. Hainzl, N. Pavlović, R. Seiringer On the well-posedness and scattering for the Gross-Pitaevskii hierarchy via quantum de Finetti Lett. Math. Phys. 104, 7 (2014), 871-891. [arxiv.org/1311.2136]
|
G. Bräunlich, C. Hainzl, R. Seiringer On contact interactions as limits of short-range potentials Methods Funct. Anal. Topology 19, 4 (2013), 364-375. [arxiv.org/1305.3805]
|
R. Frank, C. Hainzl, R. Seiringer, J. P. Solovej Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction In Operator methods in mathematical physics, 57-88, Oper. Theory Adv. Appl., 227, Birkhäuser/Springer Basel AG, Basel, 2013. [arxiv.org/1103.1866]
|
C. Hainzl, B. Schlein Dynamics of Bose-Einstein condensates of fermion pairs in the low density limit of BCS theory J. Funct. Anal. 265, 3 (2013), 399-423. [arxiv.org/1203.2811]
|
P. Gravejat, C. Hainzl, M. Lewin, É. Séré Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields Arch. Ration. Mech. Anal. 208, 2 (2013), 603-665. [arxiv.org/1204.2893]
|
R. Frank, C. Hainzl, R. Seiringer, J. P. Solovej Microscopic derivation of Ginzburg-Landau theory J. Amer. Math. Soc. 25, 3 (2012), 667-713. [arxiv.org/abs/1102.400]
|
C. Hainzl, M. Lewin, C. Sparber Ground state properties of graphene in Hartree-Fock theory J. Math. Phys. 53, 9 (2012), 095220. [arxiv.org/1203.5016]
|
C. Hainzl, R. Seiringer Low Density Limit of BCS Theory and Bose-Einstein Condensation of Fermion Pairs Lett. Math. Phys. 100, 2 (2012), 119-138. [arxiv.org/1105.1100]
|
A. Freiji, C. Hainzl, R. Seiringer The gap equation for spin-polarized fermions J. Math. Phys. 53 (2012), 012101. [The BCS gap equation for spin-polarized fermions]
|
F. Finster, C. Hainzl A spatially homogeneous and isotropic Einstein-Dirac cosmology J. Math. Phys. 52, 4 (2011), 04251. [AIP Scitation]
|
C. Hainzl, M. Lewin, E. Lenzmann, B. Schlein On Blowup for time-dependent generalized Hartree-Fock equations Ann. Henri Poincare 11, 6 (2010), 1023-1052. [arXiv:0909.3043]
|
F. Finster, C. Hainzl Quantum Oscillations Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology Found. Physics 40, 1 (2010), 116-124. [arXiv:0809.1693]
|
C. Hainzl On the Static and Dynamical Collapse of White dwarfs Contemp. Math. 529 (2010), 177-188. [AZ09-hainzl.pdf (183.3 kB)]
|
C. Hainzl, R. Seiringer Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy Math. Nachr. 283, 3 (2010), 489-499. [ arxiv.org/0808.3737 ]
|
C. Hainzl, R. Seiringer A linear criterion for solutions of non-linear equations, with application to the BCS gap equation Contemp. Math. Spectral and scattering theory for quantum magnetic systems. (2009), 101-104. [banach3.pdf (102.0 kB)]
|
C. Hainzl, M. Lewin, J. P. Solovej The thermodynamic limit of quantum Coulomb systems. Part II: Applications Adv. Math. 221, 2 (2009), 488-546. [arXiv:0806.1709]
|
C. Hainzl, M. Lewin, J. P. Solovej The thermodynamic limit of quantum Coulomb systems. Part I: General Theory Adv. Math. 221, 2 (2009), 454-487. [arXiv:0806.1708]
|
C. Hainzl, B. Schlein Stellar Collapse in the time dependent Hartree-Fock approximation Commun. Math. Phys. 287, 2 (2009), 705-717. [arXiv:0803.3571]
|
C. Hainzl, M. Lewin, É. Séré Existence of Atoms and Molecules in the mean-field approximation of No-photon Quantum Electrodynamics Arch. Ration. Mech. Anal 192, 3 (2009), 453-499. [arXiv:math-ph/0606001]
|
C. Hainzl, R. Seiringer Critical Temperature and Energy Gap for the BCS Equation Phys. Rev. B 77 (2008), 184517. [arXiv:0801.4159]
|
C. Hainzl, M. Lewin, R. Seiringer A non-linear model for relativistic electrons at positive temperature Rev. Math. Phys. 20, 10 (2008), 1283-1307. [arXiv:0802.4054]
|
C. Hainzl, R. Seiringer Spectral properties of the BCS gap equation of superfluidity Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ (2008), 117-136. [arXiv:0802.0446]
|
C. Hainzl, E. Hamza, R. Seiringer, J. P. Solovej The BCS functional for general pair interactions Commun. Math. Phys 281, 2 (2008), 349-367. [arXiv:math-ph/0703086]
|
C. Hainzl, R. Seiringer The BCS critical temperature for potentials with negative scattering length Lett. Math. Phys. 84, 2-3 (2008), 99-107. [arXiv:0803.3324]
|
C. Hainzl, M. Lewin, J. P. Solovej The thermodynamic limit for Quantum Coulomb systems: A new approach Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ, (2008), 97-116. [arXiv:0806.2436]
|
R. Frank, C. Hainzl, S. Naboko, R. Seiringer The critical temperature for the BCS equation at weak coupling Journal of Geometric Analysis 17, 4 (2007), 549-567. [arXiv:0704.3564]
|
C. Hainzl, M. Lewin, J. P. Solovej Mean-field approximation in Quantum Electrodynamics. The no-photon case Commun. Pure Appl. Math. 60 (2007), 546-595. [arXiv:math-ph/0503075]
|
C. Hainzl, M. Lewin, É. Séré, J. P. Solovej A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics Phys. Rev. A 76 (2007), 052104. [arXiv:0706.1486]
|
C. Hainzl, M. Lewin, É. Séré Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation Commun. Math. Phys 257, 3 (2005), 515-562. [arXiv:math-ph/0403005]
|
C. Hainzl, M. Hirokawa, H. Spohn Binding energy for hydrogen-like atoms in the Nelson model J. Funct. Analysis 220, 2 (2005), 424-459. [arXiv:math-ph/0312025]
|
C. Hainzl, M. Lewin, É. Séré Self-consistent solution of the polarized vacuum in a no-photon QED model Phys. A: Math. Gen. 38, 20 (2005), 4483-4499. [arXiv:physics/0404047]
|
C. Hainzl, M. Lewin, C. Sparber Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation Lett. Math. Phys. 72, 2 (2005), 99-113. [arXiv:math-ph/0412018]
|
C. Hainzl On the Vacuum Polarization Density Caused by an External Field Ann. Henri Poincare 5 (2004), 1137-1157. [arXiv:math-ph/0307002]
|
I. Catto, C. Hainzl Self-energy of one electron in non-relativistic QED J. Funct. Anal. 207, 1 (2004), 68-110. [self.pdf (338.5 kB)]
|
I. Catto, P. Exner, C. Hainzl Enhanced binding revisited for a spinless particle in non-relativistic QED J. Math. Phys. 45, 11 (2004), 4174-4185. [arXiv:math-ph/0403012]
|
C. Hainzl, V. Vougalter, S. Vugalter Enhanced binding in non-relativistic QED Commun. Math. Phys. 233 (2003), 13-26. [arXiv:math-ph/0112010]
|
C. Hainzl One non-relativistic particle coupled to a photon field Ann. Henri Poincare 5 (2003), 1137–1157. [arXiv:math-ph/0202001]
|
C. Hainzl, H. Siedentop Non-perturbative Mass and Charge Renormalization in Relativistic No-Photon Quantum electrodynamics Commun. Math. Phys 243 (2003), 241-260. [arXiv:math-ph/0303043]
|
C. Hainzl Bounds on one-dimensional exchange energies with application to lowest Landau band quantum mechanics J. Math. Phys. 43, 3 (2002), 1185-1210.
|
C. Hainzl, R. Seiringer General decomposition of radial functions on Rn, and applications to N-body quantum mechanics Lett. Math. Phys. 61 (2002), 75-84. [arXiv:math-ph/0107011]
|
C. Hainzl, R. Seiringer Mass renormalization and energy level shift in non-relativistic QED Adv. Theor. Math. Phys. 6 (2002), 847. [arXiv:math-ph/0205044]
|
C. Hainzl Enhanced binding through coupling to a photon field Cont. Math. 307 (2002), 149-154.
|
C. Hainzl, R. Seiringer Bounds on one-dimensional exchange energies with application to lowest Landau band quantum mechanics Lett. Math. Phys. 55 (2001), 133-142. [arXiv:cond-mat/0102118]
|
C. Hainzl A discrete density matrix theory for atoms in strong magnetic fields J. Math. Phys. 42, 12 (2001), 5596-5625.
|
C. Hainzl, R. Seiringer A discrete density matrix theory for atoms in strong magnetic fields Commun. Math. Phys. 217 (2001), 229-248. [arXiv:math-ph/0010005]
|