Fachbereich Mathematik

Publikationen

C. Hainzl, M. Loss
General pairing mechanisms in the BCS-theory of superconductivity
[arXiv:1603.07659]

A. Deuchert, A. Geisinger, C. Hainzl, M. Loss
Persistence of translational symmetry in the BCS model with radial pair interaction
[arXiv:1612.03303]

G. Bräunlich, C. Hainzl, R. Seiringer
Bogolubov-Hartree-Fock theory for strongly interacting fermions in the low density limit
Math. Phys. Anal. Geom. 19, Art. 13 (2016)
[arXiv:1511.08047]

C. Hainzl, R. Seiringer
The BCS functional of superconductivity and its mathematical properties
J. Math. Phys. 57, 021101 (2016)
[arXiv:1511.01995]

R. Frank, C. Hainzl, B. Schlein, R. Seiringer
Incompatibility of time-dependent Bogoliubov-de-Gennes and Ginzburg-Landau equations
Lett. Math. Phys. 106, 913-923 (2016)
[arXiv:1504.05885]

C. Hainzl, J. Seyrich
Comparing the full time-dependent Bogoliubov--de-Gennes equations to their linear
approximation: A numerical investigation

Eur. Phys. J. B 89, No. 5 (2016)
[arXiv:1504.05881]

R. Frank, C. Hainzl,R. Seiringer, J. P. Solovej
The external field dependence of the BCS critical temperature
Commun. Math. Phys. 342, 189 (2016)
[arXiv:1410.2352]

A. Deuchert, C. Hainzl, R. Seiringer
Note on a Family of Monotone Quantum Relative Entropies
Lett. Math. Phys. 105, 1449 (2015)
[arXiv:1502.07205]

T. Chen, C. Hainzl, N. Pavlovic, R. Seiringer
Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti
Commun. Pure Appl. Math. 68, 1845 (2015)
[arXiv:1307.3168]

G. Bräunlich, C. Hainzl, R. Seiringer
Translation-invariant quasi-free states for fermionic systems and the BCS approximation
Rev. Math. Phys. 26, 7 (2014), 1450012.
[arxiv.org/1305.5135 ]

T. Chen, C. Hainzl, N. Pavlović, R. Seiringer
On the well-posedness and scattering for the Gross-Pitaevskii hierarchy via quantum
de Finetti

Lett. Math. Phys. 104, 7 (2014), 871-891.
[arxiv.org/1311.2136]

G. Bräunlich, C. Hainzl, R. Seiringer
On contact interactions as limits of short-range potentials
Methods Funct. Anal. Topology 19, 4 (2013), 364-375.
[arxiv.org/1305.3805]

R. Frank, C. Hainzl, R. Seiringer, J. P. Solovej
Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction
In Operator methods in mathematical physics, 57-88,
Oper. Theory Adv. Appl., 227, Birkhäuser/Springer Basel AG, Basel, 2013.
[arxiv.org/1103.1866]

C. Hainzl, B. Schlein
Dynamics of Bose-Einstein condensates of fermion pairs in the low density limit of BCS theory
J. Funct. Anal. 265, 3 (2013), 399-423.
[arxiv.org/1203.2811]

P. Gravejat, C. Hainzl, M. Lewin, É. Séré
Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields
Arch. Ration. Mech. Anal. 208, 2 (2013), 603-665.
[arxiv.org/1204.2893]

R. Frank, C. Hainzl, R. Seiringer, J. P. Solovej
Microscopic derivation of Ginzburg-Landau theory
J. Amer. Math. Soc. 25, 3 (2012), 667-713.
[arxiv.org/abs/1102.400]

C. Hainzl, M. Lewin, C. Sparber
Ground state properties of graphene in Hartree-Fock theory
J. Math. Phys. 53, 9 (2012), 095220.
[arxiv.org/1203.5016]

C. Hainzl, R. Seiringer
Low Density Limit of BCS Theory and Bose-Einstein Condensation of Fermion Pairs
Lett. Math. Phys. 100, 2 (2012), 119-138.
[arxiv.org/1105.1100]

A. Freiji, C. Hainzl, R. Seiringer
The gap equation for spin-polarized fermions
J. Math. Phys. 53 (2012), 012101.
[The BCS gap equation for spin-polarized fermions]

F. Finster, C. Hainzl
A spatially homogeneous and isotropic Einstein-Dirac cosmology
J. Math. Phys. 52, 4 (2011), 04251.
[AIP Scitation]

C. Hainzl, M. Lewin, E. Lenzmann, B. Schlein
On Blowup for time-dependent generalized Hartree-Fock equations
Ann. Henri Poincare 11, 6 (2010), 1023-1052.
[arXiv:0909.3043]

F. Finster, C. Hainzl
Quantum Oscillations Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology
Found. Physics 40, 1 (2010), 116-124.
[arXiv:0809.1693]

C. Hainzl
On the Static and Dynamical Collapse of White dwarfs
Contemp. Math. 529 (2010), 177-188.
[AZ09-hainzl.pdf (183.3 kB)]

C. Hainzl, R. Seiringer
Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic
energy

Math. Nachr. 283, 3 (2010), 489-499.
[ arxiv.org/0808.3737 ]

C. Hainzl, R. Seiringer
A linear criterion for solutions of non-linear equations, with application to the BCS gap
equation

Contemp. Math. Spectral and scattering theory for quantum magnetic systems. (2009), 101-104.
[banach3.pdf (102.0 kB)]

C. Hainzl, M. Lewin, J. P. Solovej
The thermodynamic limit of quantum Coulomb systems. Part II: Applications
Adv. Math. 221, 2 (2009), 488-546.
[arXiv:0806.1709]

C. Hainzl, M. Lewin, J. P. Solovej
The thermodynamic limit of quantum Coulomb systems. Part I: General Theory
Adv. Math. 221, 2 (2009), 454-487.
[arXiv:0806.1708]

C. Hainzl, B. Schlein
Stellar Collapse in the time dependent Hartree-Fock approximation
Commun. Math. Phys. 287, 2 (2009), 705-717.
[arXiv:0803.3571]

C. Hainzl, M. Lewin, É. Séré
Existence of Atoms and Molecules in the mean-field approximation of No-photon Quantum
Electrodynamics

Arch. Ration. Mech. Anal 192, 3 (2009), 453-499.
[arXiv:math-ph/0606001]

C. Hainzl, R. Seiringer
Critical Temperature and Energy Gap for the BCS Equation Phys. Rev. B 77 (2008), 184517.
[arXiv:0801.4159]

C. Hainzl, M. Lewin, R. Seiringer
A non-linear model for relativistic electrons at positive temperature
Rev. Math. Phys. 20, 10 (2008), 1283-1307.
[arXiv:0802.4054]

C. Hainzl, R. Seiringer
Spectral properties of the BCS gap equation of superfluidity
Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ (2008), 117-136.
[arXiv:0802.0446]

C. Hainzl, E. Hamza, R. Seiringer, J. P. Solovej
The BCS functional for general pair interactions
Commun. Math. Phys 281, 2 (2008), 349-367.
[arXiv:math-ph/0703086]

C. Hainzl, R. Seiringer
The BCS critical temperature for potentials with negative scattering length
Lett. Math. Phys. 84, 2-3 (2008), 99-107.
[arXiv:0803.3324]

C. Hainzl, M. Lewin, J. P. Solovej
The thermodynamic limit for Quantum Coulomb systems: A new approach
Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ, (2008), 97-116.
[arXiv:0806.2436]

R. Frank, C. Hainzl, S. Naboko, R. Seiringer
The critical temperature for the BCS equation at weak coupling
Journal of Geometric Analysis 17, 4 (2007), 549-567.
[arXiv:0704.3564]

C. Hainzl, M. Lewin, J. P. Solovej
Mean-field approximation in Quantum Electrodynamics. The no-photon case
Commun. Pure Appl. Math. 60 (2007), 546-595.
[arXiv:math-ph/0503075]

C. Hainzl, M. Lewin, É. Séré, J. P. Solovej
A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum
Electrodynamics

Phys. Rev. A 76 (2007), 052104.
[arXiv:0706.1486]

C. Hainzl, M. Lewin, É. Séré
Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation
Commun. Math. Phys 257, 3 (2005), 515-562.
[arXiv:math-ph/0403005]

C. Hainzl, M. Hirokawa, H. Spohn
Binding energy for hydrogen-like atoms in the Nelson model
J. Funct. Analysis 220, 2 (2005), 424-459.
[arXiv:math-ph/0312025]

C. Hainzl, M. Lewin, É. Séré
Self-consistent solution of the polarized vacuum in a no-photon QED model
Phys. A: Math. Gen. 38, 20 (2005), 4483-4499.
[arXiv:physics/0404047]

C. Hainzl, M. Lewin, C. Sparber
Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation
Lett. Math. Phys. 72, 2 (2005), 99-113.
[arXiv:math-ph/0412018]

C. Hainzl
On the Vacuum Polarization Density Caused by an External Field
Ann. Henri Poincare 5 (2004), 1137-1157.
[arXiv:math-ph/0307002]

I. Catto, C. Hainzl
Self-energy of one electron in non-relativistic QED
J. Funct. Anal. 207, 1 (2004), 68-110.
[self.pdf (338.5 kB)]

I. Catto, P. Exner, C. Hainzl
Enhanced binding revisited for a spinless particle in non-relativistic QED
J. Math. Phys. 45, 11 (2004), 4174-4185.
[arXiv:math-ph/0403012]

C. Hainzl, V. Vougalter, S. Vugalter
Enhanced binding in non-relativistic QED
Commun. Math. Phys. 233 (2003), 13-26.
[arXiv:math-ph/0112010]

C. Hainzl
One non-relativistic particle coupled to a photon field
Ann. Henri Poincare 5 (2003), 1137–1157.
[arXiv:math-ph/0202001]

C. Hainzl, H. Siedentop
Non-perturbative Mass and Charge Renormalization in Relativistic No-Photon Quantum
electrodynamics

Commun. Math. Phys 243 (2003), 241-260.
[arXiv:math-ph/0303043]

C. Hainzl
Bounds on one-dimensional exchange energies with application to lowest Landau band
quantum mechanics

J. Math. Phys. 43, 3 (2002), 1185-1210.

C. Hainzl, R. Seiringer
General decomposition of radial functions on Rn, and applications to N-body quantum
mechanics

Lett. Math. Phys. 61 (2002), 75-84.
[arXiv:math-ph/0107011]

C. Hainzl, R. Seiringer
Mass renormalization and energy level shift in non-relativistic QED
Adv. Theor. Math. Phys. 6 (2002), 847.
[arXiv:math-ph/0205044]

C. Hainzl
Enhanced binding through coupling to a photon field
Cont. Math. 307 (2002), 149-154.

C. Hainzl, R. Seiringer
Bounds on one-dimensional exchange energies with application to lowest Landau band
quantum mechanics

Lett. Math. Phys. 55 (2001), 133-142.
[arXiv:cond-mat/0102118]

C. Hainzl
A discrete density matrix theory for atoms in strong magnetic fields
J. Math. Phys. 42, 12 (2001), 5596-5625.

C. Hainzl, R. Seiringer
A discrete density matrix theory for atoms in strong magnetic fields
Commun. Math. Phys. 217 (2001), 229-248.
[arXiv:math-ph/0010005]