
Chapter 3

Continuity, compactness and
connectedness

Definition 3.1 (Continuity and sequential continuity).
Let X,Y be topological spaces, f : X → Y a map, and a ∈ X

1. We say that f is sequentially continuous at a, if for a sequence (xn),
lim
n→∞

xn = a implies that

lim
n→∞

f(xn) = f(a).

2. We say that f is continuous at a, if

∀U ∈ U (f(a))∃V ∈ U(a) : f(V ) ⊂ U.1

If a function is (sequentially) continuous at all points a ∈ X, then we say that f
is (sequentially) continuous on X.

Proposition 3.2. If f : X → Y is continuous at x ∈ X, then f is also sequen-
tially continuous at x.

Proposition 3.3 (ε-δ-continuity in metric spaces). A function f : X → Y
between metric spaces X,Y is continuous at x ∈ X, if and only if

∀ε > 0∃δ > 0 : f(Bδ(a)) ⊂ Bε(f(a))

Proposition 3.4. A function f : X → Y between metric spaces X,Y is contin-
uous at a ∈ X, if and only if it is sequentially continuous at a.

Proof. ⇒ Proposition 3.2
1U(x) is the set of all neighbourhoods of the point x.
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⇐ (by contraposition A⇒ B ⇔ ¬B ⇒ ¬A)
Assume that f is not continuous at a, i.e.

∃ε > 0∀δ > 0 : f(Bδ(a)) ̸⊂ Bε(f(a)).

For δ = 1
n choose xn ∈ Bδ(a)\f−1(Bε(f(a))) ̸= ∅. Then lim

n→∞
xn = a, but

f(xn) /∈ Bε(f(a))∀n ⇒ f is not sequentially continuous.

Theorem 3.5. Let X,Y be topological spaces. A map f : X → Y is continuous
(on X), if the preimage f−1(O) ⊂ X of any open set O ⊂ Y is open.

Example 3.6. 1. In a metric space (X, d) the distance function to a point
b ∈ X,

db : X → [0,∞), x 7→ db(x) := d(x, b)

is continuous.2

2. In a normed space (V, ∥ · ∥) the norm:

∥ · ∥ : V → [0,∞),

addition:
+ : V × V → V, (x, y) 7→ x+ y,

and multiplication by scalars:

· : K× V → V, (λ, v) 7→ λ · v

are all continuous.

3. The composition of continuous functions is continuous. If f : X → Y and
g : Y → Z are continuous then also g ◦ f : X → Z is continuous.

4. If X is equipped with the discrete topology, then every map f : X → Y
is continuous. If X is equipped with the trivial topology, then every map
f : Y → X is continuous.

Remark 3.7. 1. Let (X, dX) and (Y, dY ) be metric spaces. Then a metric on
X × Y is for example

d((x1, y1), (x2, y2)) := (dx(x1, x2)
p + dy(y1, y2)

p)1/p 1 ≤ p <∞

2. Let (X, TX) and (Y, TY ) topological space. Then the (product) topology
on X × Y is generated by

{O1 ×O2 : O1 ∈ TX , O2 ∈ TY }

also called bose topology .
2Also d : X×X → [0,∞) is continuous using a suitable metric on X×X. For the definition

of this metric, see Remark 3.7.
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3. Let (Xi, Ti), i ∈ I, be topological spaces. Then the product topology on∏
i∈I

Xi is generated by

{∏
i∈I

Oi : Oi ∈ Ti and Oi ̸= Xi only for finitely many i ∈ I
}
.

Definition 3.8 (Lipschitz continuity).
Let X,Y be metric spaces. A function f : X → Y is called Lipschitz-continuous,
if there exists 0 ≤ L ≤ ∞ such that

∀x1, x2 ∈ X : dY (f(x1), f(x2)) ≤ L · dX(x1, x2).

Then L is called a Lipschitz-constant for f . If f has a Lipschitz-constant L < 1,
then f is called contraction.

Example 3.9. 1. f(x) = ax+ b is Lipschitz continuous with L = a.

2. f ∈ C1(R) then L = sup
x∈R

|f ′(x)|.

3. f(x) = x2 is continuous but not Lipschitz continuous in R.

4. f(x) =
√
|x| is continuous but not Lipschitz continuous in R, as its deriva-

tive around 0 diverges.

Definition 3.10 (Homeomorphic functions, isometries and isometric isomor-
phisms).

1. Two topological spaces X,Y are homeomorphic if there exists a bicontinu-
ous bijection

f : X → Y a homeomorphism

2. A map f : X → Y between metric spaces is an isometry , if

∀x1, x2 ∈ X : dY (f(x1), f(x2)) = dx(x1, x2) .

X and Y are isometric, if there exists a bijective isometry f : X → Y .

3. Two normed spaces V and W are isometrically isomorphic, if there exists
a linear bijection (isomorphism) A : V →W such that

∀v ∈ V : ∥Av∥W = ∥v∥V .

Example 3.11. 1. The interval (a, b) ⊂ R is homeomorphic, but not isomet-
ric to R. The map

f : (a, b) → R, x 7→ f(x) =
1

a− x
+

1

b− x

is an example of a homeomorphism.
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2. The isometries of Euclidean space (Rn, d2) are translations, rotations and
reflections and compositions thereof (euclidean group).

3. R2 and C with the standard norms are isometrically isomorphic.

Definition 3.12 (Pointwise and uniform convergence).
Let X be a set, Y a metric space and

fn : X → Y, n ∈ N and f : X → Y

both functions.

1. We say that fn converges pointwise to f , if

∀x ∈ X : lim
n→∞

dY (fn(x), f(x)) = 0. ⇔ lim
n→∞

fn(x) = f(x)

2. We say that fn converges uniformly to f , if

lim
n→∞

sup
x∈X

dY (fn(x), f(x)) = 0

If (Y, ∥ · ∥) is a normed space, then fn → f uniformly, if and only if

lim
n→∞

∥fn − f∥∞ = 0

Example 3.13. fn : [0, 1] → [0, 1], x 7→ fn(x) = xn, then pointwise

fn(x)
n→∞−→ f(x) =

{
0 for x < 1

1 for x = 1
.

However, (fn) does not converge uniformly to f since sup
x∈[0,1]

|fn(x) − f(x)| = 1.

To see this consider x = 1 − δ for arbitrarily small δ > 0. Then, fn(x) =
(1 − δ)n = 1 − nδ + O(δ2), whereas f(x) = 0, so after sending δ → 0 we get
sup
x∈[0,1]

|fn(x)− f(x)| ≥ 1.

Proposition 3.14 (Uniform limits of continuous functions are continuous).
Let (X, T ) a topological and (Y, d) a metric space. Let fn : X → Y be a sequence
of continuous functions and let fn → f uniformly. Then f is continuous.

Corollary 3.15. Let X be a topological space, (Y, ∥·∥Y ) a complete normed space
and Cb(X,Y ) the space of continuous bounded functions, i.e.

Cb(X,Y ) = {f : X → Y continuous | sup
x∈X

∥f(x)∥Y <∞} .

Then the normed space (Cb(X,Y ), ∥ · ∥∞) is complete.
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Definition 3.16 (Open cover and finite subcover).
Let (X, T ) be a topological space and Y ⊂ X. A family (Ui)i∈I of open sets,
Ui ∈ T ∀i ∈ I, is called an open cover of Y , if

Y ⊂
⋃
i∈I

Ui

A set K ⊂ X is called compact , if any open cover (Ui)i∈I of K admits a finite
subcover, i.e. there exists i1, . . . , in ∈ I such that:

K ⊂
⋃

i=i1,...,in

Ui

Example 3.17. 1. Every finite subset K = {x1, . . . , xn} of a topological
space is compact.

2. (0, 1] ⊂ R is not a compact set. The open cover (0, 1] ⊂
∞⋃
n=2

( 1n , 2) admits

no finite subcover.

Theorem 3.18 (Bolzano-Weierstraß). Let K ⊂ X be compact. Then any se-
quence in K has a cluster point in K.

Remark 3.19. In metric spaces also the converse is true, namely, that if every
sequence in a subset has a cluster point, then it is compact.

Proposition 3.20. Let f : X → Y be a continuous function and K ⊂ X a
compact set. Then also f(K) ⊂ Y is compact.

Proposition 3.21. 1. Let X be a topological space and K ⊂ X compact.
Then any close subset A ⊂ K is also compact.

2. If X is a Hausdorff space and K compact, then K is closed.

Definition 3.22 (Sequential compactness).
Let X be a topological space. Then, K ⊂ X is called sequentially compact if
every sequence in K has a convergent subsequence with limit in K.

Proposition 3.23. A subset K ⊂ (X, d) of a metric space is compact if and only
if it is sequentially compact.

Definition 3.24 (Bounded sets and the diameter of a set).
Let X be a metric space.

1. A subset B ⊂ X is bounded , if

∃C ∈ R∀x, y ∈ B : d(x, y) ≤ C

2. The diameter of the set Y ⊂ X is

diam(Y ) = sup{d(x, y) | x, y ∈ Y } ∈ [0,∞) ∪ {∞}
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Theorem 3.25.
Let X be a metric space and K ⊂ X compact. Then K is bounded and closed.

Theorem 3.26 (Heine-Borel). A subset K of a finite-dimensional normed space
is compact if it is bounded and closed.

Theorem 3.27 (Weierstraß). Let f : K → R be a continuous function and K
compact. Then f is bounded (f(K) ⊂ R is bounded) and attains its maximum
and its minimum.

Definition 3.28 (Equicontinuity).
Let X,Y be metric spaces and A ⊂ C(X,Y ). Then the set A is called equicon-
tinuous at x ∈ X, if

∀ε > 0∃δ > 0 ∀f ∈ A : f(Bδ(x)) ⊂ Bε(f(x)) .

Theorem 3.29 (Arzela-Ascoli). Let X be a compact metric space and consider
C(X,C) equipped with the ∥ · ∥∞-norm. A subset K ⊂ C(X,C) is compact, if
and only if it is closed, bounded pointwise (i.e. ∀x ∈ X:

sup
f∈K

|f(x)| <∞)

and equicontinuous.

Definition 3.30 (Connected, disconnected and path connected spaces).
Let X be a topological space. If X is the union of two disjoint, open, non-empty
sets, then X is disconnected , otherwise connected .
X is path-connected , if any two points x0, x1 ∈ X can be connected by a contin-
uous path, i.e. there exists

γ : [0, 1] → X

continuous, with γ(0) = x0 and γ(1) = x1.

Proposition 3.31. If X is path-connected then X is connected.

Proposition 3.32. Let O be an open subset of a normed space. Then O is
connected, if and only if it is path connected.

Proposition 3.33. Let f : X → Y be continuous and A ⊂ X (path) connected.
Then also f(A) ⊂ Y is (path) connected.

Definition 3.34 (Bounded functions).
A function f : X → Y with X a set and (Y, d) a metric space, is called bounded,
if and only if f(X) ⊂ Y is bounded.

Definition 3.35 (Bounded linear maps and their norms).
A linear map A : V →W between normed spaces is called bounded, if A(B1(0))
is bounded , i.e.

∃C ∈ R∀x ∈ V : ∥Ax∥W ≤ C∥x∥V .
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The smallest such constant C is called the operator norm of A, i.e.

∥A∥op := sup{∥Ax∥W | x ∈ B1(0)}

The space of bounded linear maps V →W is denoted by

L(V,W ) or B(V,W )

and ∥ · ∥op is a norm on L(V,W ).

Remark 3.36. 1. If A ∈ L(V,W ) we have for all x ∈ V

∥Ax∥W ≤ ∥A∥op · ∥x∥V

2. A ∈ L(V,W ) is bounded if and only if it is continuous.

3. If dimV <∞, then all linear maps V →W are bounded.

4. If (W, ∥ · ∥W ) is a Banach space, then (L(V,W ), ∥ · ∥op) is also complete.
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Exercises

1. (Proposition 3.2) Let f : X → Y be a map between topological spaces
and assume that it is continuous at x ∈ X. Prove that it is also sequentially
continuous at x.

2. (Proposition 3.3) Show that a map f : X → Y between metric spaces X,Y
is continuous at x ∈ X, if and only if

∀ε > 0 ∃δ > 0 : f(Bδ(a)) ⊂ Bε(f(a)) .

3. (Theorem 3.18) Let K ⊂ X be a compact subset of a topological space.
Show that any sequence in K has a cluster point in K.

4. (Proposition 3.21) Show that any compact subset of a Hausdorff space is
closed.

5. Find an example of

(i) a sequence of maps that converges pointwise but not uniformly.

(ii) a connected but not path connected topological space.
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