CHAPTER 3

Continuity, compactness and connectedness

Definition 3.1 (Continuity and sequential continuity). Let X, Y be topological spaces, $f : X \to Y$ a map, and $a \in X$

1. We say that f is sequentially continuous at a, if for a sequence (x_n) , $\lim_{n \to \infty} x_n = a$ implies that

$$\lim_{n \to \infty} f(x_n) = f(a).$$

2. We say that f is *continuous* at a, if

$$\forall U \in \mathcal{U}(f(a)) \exists V \in \mathcal{U}(a) : \quad f(V) \subset U^{1}$$

If a function is (sequentially) continuous at all points $a \in X$, then we say that f is (sequentially) continuous on X.

Proposition 3.2. If $f : X \to Y$ is continuous at $x \in X$, then f is also sequentially continuous at x.

Proposition 3.3 (ε - δ -continuity in metric spaces). A function $f : X \to Y$ between metric spaces X, Y is continuous at $x \in X$, if and only if

 $\forall \varepsilon > 0 \exists \delta > 0 : \quad f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a))$

Proposition 3.4. A function $f : X \to Y$ between metric spaces X, Y is continuous at $a \in X$, if and only if it is sequentially continuous at a.

Proof. \Rightarrow Proposition 3.2

 $^{{}^{1}\}mathcal{U}(x)$ is the set of all neighbourhoods of the point x.

3. Continuity, compactness and connectedness

 $(by \text{ contraposition } A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A)$ Assume that f is not continuous at a, i.e.

$$\exists \varepsilon > 0 \forall \delta > 0 : \quad f(B_{\delta}(a)) \not\subset B_{\varepsilon}(f(a)).$$

For $\delta = \frac{1}{n}$ choose $x_n \in B_{\delta}(a) \setminus f^{-1}(B_{\varepsilon}(f(a))) \neq \emptyset$. Then $\lim_{n \to \infty} x_n = a$, but $f(x_n) \notin B_{\varepsilon}(f(a)) \forall n \Rightarrow f$ is not sequentially continuous.

Theorem 3.5. Let X, Y be topological spaces. A map $f : X \to Y$ is continuous (on X), if the preimage $f^{-1}(O) \subset X$ of any open set $O \subset Y$ is open.

Example 3.6. 1. In a metric space (X, d) the distance function to a point $b \in X$,

$$d_b: X \to [0, \infty), \quad x \mapsto d_b(x) := d(x, b)$$

is continuous.²

2. In a normed space $(V, \|\cdot\|)$ the norm:

$$\|\cdot\|: V \to [0,\infty),$$

addition:

$$+: V \times V \to V, \quad (x, y) \mapsto x + y,$$

and multiplication by scalars:

$$\cdot : \mathbb{K} \times V \to V, \quad (\lambda, v) \mapsto \lambda \cdot v$$

are all continuous.

- 3. The composition of continuous functions is continuous. If $f: X \to Y$ and $g: Y \to Z$ are continuous then also $g \circ f: X \to Z$ is continuous.
- 4. If X is equipped with the discrete topology, then every map $f: X \to Y$ is continuous. If X is equipped with the trivial topology, then every map $f: Y \to X$ is continuous.
- Remark 3.7. 1. Let (X, d_X) and (Y, d_Y) be metric spaces. Then a metric on $X \times Y$ is for example

$$d((x_1, y_1), (x_2, y_2)) := (d_x(x_1, x_2)^p + d_y(y_1, y_2)^p)^{1/p} \quad 1 \le p < \infty$$

2. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) topological space. Then the (product) topology on $X \times Y$ is generated by

$$\{O_1 \times O_2 : O_1 \in \mathcal{T}_X, O_2 \in \mathcal{T}_Y\}$$

also called *bose topology*.

²Also $d: X \times X \to [0, \infty)$ is continuous using a suitable metric on $X \times X$. For the definition of this metric, see Remark 3.7.

3. Continuity, compactness and connectedness

3. Let $(X_i, \mathcal{T}_i), i \in I$, be topological spaces. Then the product topology on $\prod X_i$ is generated by

$$\Big\{\prod_{i\in I} O_i : O_i \in \mathcal{T}_i \text{ and } O_i \neq X_i \text{ only for finitely many } i \in I \Big\}.$$

Definition 3.8 (Lipschitz continuity).

Let X, Y be metric spaces. A function $f: X \to Y$ is called *Lipschitz-continuous*, if there exists $0 \le L \le \infty$ such that

$$\forall x_1, x_2 \in X : d_Y(f(x_1), f(x_2)) \le L \cdot d_X(x_1, x_2).$$

Then L is called a *Lipschitz-constant* for f. If f has a Lipschitz-constant L < 1, then f is called *contraction*.

Example 3.9. 1. f(x) = ax + b is Lipschitz continuous with L = a.

- 2. $f \in C^1(\mathbb{R})$ then $L = \sup_{x \in \mathbb{R}} |f'(x)|$.
- 3. $f(x) = x^2$ is continuous but not Lipschitz continuous in \mathbb{R} .
- 4. $f(x) = \sqrt{|x|}$ is continuous but not Lipschitz continuous in \mathbb{R} , as its derivative around 0 diverges.

Definition 3.10 (Homeomorphic functions, isometries and isometric isomorphisms).

1. Two topological spaces X, Y are *homeomorphic* if there exists a bicontinuous bijection

 $f: X \to Y$ a homeomorphism

2. A map $f: X \to Y$ between metric spaces is an *isometry*, if

 $\forall x_1, x_2 \in X : d_Y(f(x_1), f(x_2)) = d_x(x_1, x_2).$

X and Y are *isometric*, if there exists a bijective isometry $f: X \to Y$.

3. Two normed spaces V and W are *isometrically isomorphic*, if there exists a linear bijection (isomorphism) $A: V \to W$ such that

$$\forall v \in V: \quad \|Av\|_W = \|v\|_V.$$

Example 3.11. 1. The interval $(a, b) \subset \mathbb{R}$ is homeomorphic, but not isometric to \mathbb{R} . The map

$$f:(a,b) \to \mathbb{R}, \quad x \mapsto f(x) = \frac{1}{a-x} + \frac{1}{b-x}$$

is an example of a homeomorphism.

- 2. The isometries of Euclidean space (\mathbb{R}^n, d_2) are translations, rotations and reflections and compositions thereof (euclidean group).
- 3. \mathbb{R}^2 and \mathbb{C} with the standard norms are isometrically isomorphic.

Definition 3.12 (Pointwise and uniform convergence). Let X be a set, Y a metric space and

$$f_n: X \to Y, n \in \mathbb{N}$$
 and $f: X \to Y$

both functions.

1. We say that f_n converges pointwise to f, if

$$\forall x \in X: \quad \lim_{n \to \infty} d_Y(f_n(x), f(x)) = 0. \quad \Leftrightarrow \quad \lim_{n \to \infty} f_n(x) = f(x)$$

2. We say that f_n converges uniformly to f, if

$$\lim_{n \to \infty} \sup_{x \in X} d_Y(f_n(x), f(x)) = 0$$

If $(Y, \|\cdot\|)$ is a normed space, then $f_n \to f$ uniformly, if and only if

$$\lim_{n \to \infty} \|f_n - f\|_{\infty} = 0$$

Example 3.13. $f_n: [0,1] \to [0,1], x \mapsto f_n(x) = x^n$, then pointwise

$$f_n(x) \xrightarrow{n \to \infty} f(x) = \begin{cases} 0 & \text{for } x < 1\\ 1 & \text{for } x = 1 \end{cases}$$

However, (f_n) does not converge uniformly to f since $\sup_{x \in [0,1]} |f_n(x) - f(x)| = 1$. To see this consider $x = 1 - \delta$ for arbitrarily small $\delta > 0$. Then, $f_n(x) = (1 - \delta)^n = 1 - n\delta + O(\delta^2)$, whereas f(x) = 0, so after sending $\delta \to 0$ we get $\sup_{x \in [0,1]} |f_n(x) - f(x)| \ge 1$.

Proposition 3.14 (Uniform limits of continuous functions are continuous). Let (X, \mathcal{T}) a topological and (Y, d) a metric space. Let $f_n : X \to Y$ be a sequence of continuous functions and let $f_n \to f$ uniformly. Then f is continuous.

Corollary 3.15. Let X be a topological space, $(Y, \|\cdot\|_Y)$ a complete normed space and $C_b(X, Y)$ the space of continuous bounded functions, i.e.

$$C_b(X,Y) = \left\{ f: X \to Y \text{ continuous } | \sup_{x \in X} \|f(x)\|_Y < \infty \right\}.$$

Then the normed space $(C_b(X,Y), \|\cdot\|_{\infty})$ is complete.

Definition 3.16 (Open cover and finite subcover). Let (X, \mathcal{T}) be a topological space and $Y \subset X$. A family $(U_i)_{i \in I}$ of open sets, $U_i \in \mathcal{T} \ \forall i \in I$, is called an *open cover* of Y, if

$$Y \subset \bigcup_{i \in I} U_i$$

A set $K \subset X$ is called *compact*, if any open cover $(U_i)_{i \in I}$ of K admits a finite subcover, i.e. there exists $i_1, \ldots, i_n \in I$ such that:

$$K \subset \bigcup_{i=i_1,\dots,i_n} U_i$$

- **Example 3.17.** 1. Every finite subset $K = \{x_1, \ldots, x_n\}$ of a topological space is compact.
 - 2. $(0,1] \subset \mathbb{R}$ is not a compact set. The open cover $(0,1] \subset \bigcup_{n=2}^{\infty} (\frac{1}{n},2)$ admits no finite subcover.

Theorem 3.18 (Bolzano-Weierstraß). Let $K \subset X$ be compact. Then any sequence in K has a cluster point in K.

Remark 3.19. In metric spaces also the converse is true, namely, that if every sequence in a subset has a cluster point, then it is compact.

Proposition 3.20. Let $f : X \to Y$ be a continuous function and $K \subset X$ a compact set. Then also $f(K) \subset Y$ is compact.

- **Proposition 3.21.** 1. Let X be a topological space and $K \subset X$ compact. Then any close subset $A \subset K$ is also compact.
 - 2. If X is a Hausdorff space and K compact, then K is closed.

Definition 3.22 (Sequential compactness).

Let X be a topological space. Then, $K \subset X$ is called *sequentially compact* if every sequence in K has a convergent subsequence with limit in K.

Proposition 3.23. A subset $K \subset (X, d)$ of a metric space is compact if and only if it is sequentially compact.

Definition 3.24 (Bounded sets and the diameter of a set). Let X be a metric space.

1. A subset $B \subset X$ is *bounded*, if

$$\exists C \in \mathbb{R} \forall x, y \in B: \quad d(x, y) \le C$$

2. The *diameter* of the set $Y \subset X$ is

 $\operatorname{diam}(Y) = \sup\{d(x, y) \mid x, y \in Y\} \in [0, \infty) \cup \{\infty\}$

Theorem 3.25.

Let X be a metric space and $K \subset X$ compact. Then K is bounded and closed.

Theorem 3.26 (Heine-Borel). A subset K of a finite-dimensional normed space is compact if it is bounded and closed.

Theorem 3.27 (Weierstraß). Let $f : K \to \mathbb{R}$ be a continuous function and K compact. Then f is bounded $(f(K) \subset \mathbb{R} \text{ is bounded})$ and attains its maximum and its minimum.

Definition 3.28 (Equicontinuity).

Let X, Y be metric spaces and $A \subset C(X, Y)$. Then the set A is called *equicon*tinuous at $x \in X$, if

$$\forall \varepsilon > 0 \exists \delta > 0 \; \forall f \in A : \quad f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x)) \,.$$

Theorem 3.29 (Arzela-Ascoli). Let X be a compact metric space and consider $C(X, \mathbb{C})$ equipped with the $\|\cdot\|_{\infty}$ -norm. A subset $K \subset C(X, \mathbb{C})$ is compact, if and only if it is closed, bounded pointwise (i.e. $\forall x \in X$:

$$\sup_{f \in K} |f(x)| < \infty$$

and equicontinuous.

Definition 3.30 (Connected, disconnected and path connected spaces). Let X be a topological space. If X is the union of two disjoint, open, non-empty sets, then X is *disconnected*, otherwise *connected*.

X is *path-connected*, if any two points $x_0, x_1 \in X$ can be connected by a continuous path, i.e. there exists

 $\gamma:[0,1]\to X$

continuous, with $\gamma(0) = x_0$ and $\gamma(1) = x_1$.

Proposition 3.31. If X is path-connected then X is connected.

Proposition 3.32. Let O be an open subset of a normed space. Then O is connected, if and only if it is path connected.

Proposition 3.33. Let $f : X \to Y$ be continuous and $A \subset X$ (path) connected. Then also $f(A) \subset Y$ is (path) connected.

Definition 3.34 (Bounded functions).

A function $f: X \to Y$ with X a set and (Y, d) a metric space, is called bounded, if and only if $f(X) \subset Y$ is bounded.

Definition 3.35 (Bounded linear maps and their norms). A linear map $A: V \to W$ between normed spaces is called bounded, if $A(B_1(0))$ is *bounded*, i.e.

$$\exists C \in \mathbb{R} \forall x \in V : \quad \|Ax\|_W \le C \|x\|_V.$$

The smallest such constant C is called the *operator norm* of A, i.e.

$$||A||_{op} := \sup\{||Ax||_W \mid x \in \overline{B_1(0)}\}$$

The space of bounded linear maps $V \to W$ is denoted by

$$\mathcal{L}(V, W)$$
 or $\mathcal{B}(V, W)$

and $\|\cdot\|_{op}$ is a norm on $\mathcal{L}(V, W)$.

Remark 3.36. 1. If $A \in \mathcal{L}(V, W)$ we have for all $x \in V$

$$||Ax||_W \le ||A||_{op} \cdot ||x||_V$$

- 2. $A \in \mathcal{L}(V, W)$ is bounded if and only if it is continuous.
- 3. If dim $V < \infty$, then all linear maps $V \to W$ are bounded.
- 4. If $(W, \|\cdot\|_W)$ is a Banach space, then $(\mathcal{L}(V, W), \|\cdot\|_{op})$ is also complete.

Exercises

1. (Proposition 3.2) Let $f : X \to Y$ be a map between topological spaces and assume that it is continuous at $x \in X$. Prove that it is also sequentially continuous at x.

2. (Proposition 3.3) Show that a map $f : X \to Y$ between metric spaces X, Y is continuous at $x \in X$, if and only if

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \quad f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)) \,.$$

3. (Theorem 3.18) Let $K \subset X$ be a compact subset of a topological space. Show that any sequence in K has a cluster point in K.

4. (Proposition 3.21) Show that any compact subset of a Hausdorff space is closed.

- 5. Find an example of
 - (i) a sequence of maps that converges pointwise but not uniformly.
 - (ii) a connected but not path connected topological space.