
Chapter 8

Non-relativistic quantum
mechanics

We would hope for a mathematical model for the motion of N particles in small
scales (electrons, nuclei, atoms, ...) in physical space and time. However, quan-
tum mechanics fall short of this expectation. Strictly speaking, quantum me-
chanics is a mathematical formalism that allows making empirical predictions
about such systems, which are confirmed by experiments very well. The phys-
ical nature of those particles moving in space and time (also when we do not
perform experiments or "observations" on them) is an ongoing debate for almost
100 years.

Quantum mechanics of N interacting spin-less point particles

1. The state of the system at time t ∈ R is completely described by the wave-
function

ψ(t, ·) : R3N → C,

where
∥ψ(t, ·)∥2L2(R3N ) =

∫
R3N

|ψ(t, q)|2 d3Nq = 1

is assumed. The physical meaning of ψ(t, ·) is that

ρ(t, q) = |ψ(t, q)|2

is a probability density : The probability that the configuration Q(t) is (or is
found to be when someone measures) in a subset Λ ⊂ R3N of configuration
space is given by

Prob(Q(t) ∈ Λ) = Pψt(Λ) =

∫
Λ

|ψ(t, q)|2 d3Nq.

Thus, the wave-function ψt(·) = ψ(t, ·) defines a probability measure Pψt

on configuration space. It should be noted that the wave function does
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not provide a mass- or charge density. Quantum mechanics is about point
particles, not about smeared-out "stuff"!

2. The dynamical law specifying the time-evolution of the state ψ(t, ·) is the
Schrödinger equation

iℏ∂tψ(t, q) = −ℏ2
N∑
j=1

1

2mj
∆qjψ(t, q) + V (q)ψ(t, q)

= (Hψ)(t, q)

where the linear operator (to be defined on suitable function spaces)

H = −ℏ2
N∑
j=1

1

2mj
∆qj + V (q)

is called the Hamiltonian. The Schrödinger equation is a linear partial
differential equation (PDE) for a function on configuration space R3N .

Definition 8.1 (Definition). Square integrable solutions of the time-independent
Schrödinger equation

(HψE)(q) = EψE(q) for some E ∈ R

are called eigenstates of H (or energy eigenstates), and

ψ(t, q) = e−itEψE(q)

is a stationary solution of the time-dependent Schrödinger equation.
Typically, only for a discrete set {Ej} ⊂ R solutions of the time-independent
Schrödinger equation in L2 exist.

Example 8.2. 1. Free particle in a box:

− d2

dx2
ψ(x) = Eψ(x) ψ ∈ L2([0, 1])

with Dirichlet boundary conditions ψ(0) = ψ(1) = 0.

⇒ ψn(x) =
√
2 sin(n · π · x) n ∈ N

with the "energy eigenstates" En = n2 · π2.

2. Hydrogen atom:

H = − 1

2me
∆q −

c

|q|
on L2(R3)

with the energy eigenstates of En = − c̃
n2 for n ∈ N. The differences En−Em

correspond to energies of spectral lines of hydrogen atoms, i.e. to photons
absorbed or emitted by hydrogen. The corresponding eigenfunctions are
called orbitals.
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3. Harmonic oscillator:

H = − h2

2m

d2

dx2
+
m

2
ω2x2

For the time-independent Schrödinger equation

Hψn = Enψn one gets En = ℏω
(
n+

1

2

)
n ∈ N0

and

ψn(x) =
1√
2nn!

(mω
πℏ

)1/4
Hn

(√
mω

ℏ
x

)
e−

mωx2

2ℏ

with Hn(·) being the Hermite polynomials.

"Axiomatic" formulation of the quantum measurement formalism

1. State space: The possible states of a quantum system are described by
normalised vectors ψ ∈ H in a Hilbert space H.

2. Observables and operators: Every physical observable A corresponds to a
self-adjoint operator Â on H.

3. Measurement process:

(a) Possible outcomes: The measurement of an observable A yields as an
outcome one of the eigenvalues of the corresponding operator Â.

(b) Probabilities: Let A be an observable and ai an eigenvalue of the
associated operator Â and Pai the spectral projection on the corre-
sponding eigenspace. The probability for obtaining the result ai when
measuring the observable A on a system in the state ψ is

Prob(A = ai |ψ) = ∥Paiψ∥2.

(c) State after the measurement: If the measurement of the observable A
on a quantum system in the state ψ yields the outcome ai, then after
the measurement the state of the system is

ψcoll. =
Paiψ

∥Paiψ∥

"collapse of the wave function".

4. Dynamic law: In between measurements the state ψ of the system evolves
according to the Schrödinger equation:

iℏ
d

dt
ψ(t) = Ĥψ(t),

where Ĥ is the Hamilton operator (the operator corresponding to the "en-
ergy observable")
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5. Correspondence principle: Let A : R6N → R, (q, p) 7→ A(q, p) be a classi-
cal observable. Then the corresponding operator Â is the given

Â = A(q,−iℏ∇q)

acting on L2(R3N ) = H.

Example 8.3 (Examples of the applied correspondence principle).

1. Ĥ = H(q,−iℏ∇q) = −ℏ2
N∑
j=1

1
2mj

∆qj + V (q)

2. p̂j = −iℏ∇qj the momentum operator

3. q̂j = qj the position operator

4. [q̂j , p̂i] = iℏδij ↔ {qj , pj} = δij , i.e. the Poisson bracket of classical me-
chanics is replaced by the commutator.

Remark 8.4 (Dirac notation). It has turned out to be quite advantageous in the
context of quantum mechanics to use the notation of Paul Dirac (1902 - 1984).

1. Vectors ψ ∈ H are written as |ψ⟩ ("ket")

2. The linear functional Jψ : H → C, φ 7→ Jψ(ϕ) = ⟨ψ|φ⟩H is written as ⟨ψ|
("bra")

3. The inner product of ψ,φ ∈ H then becomes:

⟨φ|ψ⟩ = ⟨φ|ψ⟩H

4. while "ket bra" is a rank one operator:

|ψ⟩⟨φ| : H → H, χ 7→ |ψ⟩⟨φ|χ = ⟨φ|χ⟩H ψ .

5. A bounded linear operator Â ∈ L(H) can be written in terms of an ONB
(ψj) as

Â =

∞∑
j,i=1

|ψj⟩
〈
ψj

∣∣∣Âψi〉 ⟨ψi| =
∑
ij

〈
ψj

∣∣∣Âψi〉 |ψj⟩⟨ψi| .

Definition 8.5 (Spin). Particles with "spin" are described by Cn-valued wave
functions:

1. The wave function for one particle with spin m
2 (m ∈ N0)

ψ : R3N → Cm+1

(e.g. for electrons m = 1, but for nuclei m = 0 or m > 1 are possibilities).
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2. wave function for N particles with spin m
2

ψ : R3N → C(m+1)N

(e.g. 6 electrons of a carbon atom: ψ : R18 → C64).

3. The Pauli Hamiltonian for N = 1, m = 1 is given by

Hψ =
1

2m
(−i∇q + eA(q))2 ψ − c ⟨σ|B(q)⟩R3︸ ︷︷ ︸

∈L(C2)

ψ ,

with σ being Pauli matrices, A(q) the vector potential and B(q) the mag-
netic field (B = curlA).

Definition 8.6 (Bosonic and fermionic wave functions). Let us consider N iden-
tical particles, i.e. q = (q1, . . . , qN ). We then distinguish two cases.

1. m even → bosons → ψ : R3N → C(m+1)N symmetric under permutation of
arguments,

ψ(qπ(1), . . . , qπ(n)) = Uπψ(q1, . . . , qN ) ∀π ∈ SN

2. m odd → fermions → ψ : R3N → C(m+1)N anti-symmetric under permuta-
tion of arguments

ψ(qπ(1), . . . , qπ(N)) = sgn(π)Uπψ(q1, . . . , qN ) ∀π ∈ SN
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Exercises

1. Define the angular momentum operator in direction z by

L̂z
.
= ŷp̂z − ẑp̂y .

Use the canonical commutation relation to show that[
L̂x, L̂y

]
= iℏ ϵxyzL̂z .

2. Let ψ ∈ C∞
(
[0, T ],H

)
be a solution to the Schrödinger equation. Show that

if ∥ψ(0)∥ = 1, then ∥ψ(t)∥ = 1 for all t ∈ [0, T ].

3. We consider the Hilbert space of a “qubit” H = C2.

(a) What are the possible outcomes and their respective probabilities when

measuring the state
(
1
0

)
with respect to the operator

(
0 −i
i 0

)
(spin in

y-direction). What is the state of the system after the measurement in
either case?

(b) Suppose the state is now given by 1√
2

(
1
i

)
= ψ0 and evolves according to

the Schrödinger equation with respect to H = B

(
1 0
0 −1

)
, where B > 0,

for a time T and then is measured with respect to
(
0 −i
i 0

)
. What are the

probabilities of the possible outcomes.

(c) Consider the state
(
1
0

)
. Compare measuring it with respect to

(
1 0
0 −1

)
with measuring first with respect to

(
0 −i
i 0

)
and then

(
1 0
0 −1

)
.
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