
Chapter 5

Measure and integration theory

Remark 5.1. 1. Idea of the Riemann Integral: Approximate f by "stair func-
tions", i.e. decompose the domain into intervals (rectangles, cubes, ...) and
use

g(x) =

n∑
i=1

αiχ[ai,ai+1](x)

where for A ⊂ R the characteristic function of A is defined:

χA(x) =

{
1 x ∈ A
0 x /∈ A

The integral of a stair function is:∫
g(x)dx =

n∑
i=1

αi(ai+1 − ai)

2. Idea of the Lebesgue integral: Decompose the range of the function into
intervals [αi, αi+1) and approximate by "simple functions"

g(x) =
n∑
i=1

αiχAi(x)

e.g. Ai = f−1([αi, αi+1)) (not interval in general).
The integral of a simple function is given by:∫

g(x) dx =
n∑
i=1

αλ(Ai)

where λ(Ai) is the "length" of Ai (area, volume, measure).

Example 5.2. f(x) = χQ∩[0,1](x) is not Rieman integrable, but it is Lebesgue
integrable:

1∫
0

f(x)dx = 1 · λ(Q ∩ [0, 1]) + 0 · λ([0, 1]\Q) = 0

26
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Remark 5.3. Two advantages of the Lebesgue integral:

1. There are more integrable functions, meaning spaces of Lebesgue integrable
functions are complete.

2. The Lebesgue integral can be defined on all spaces where one can define a
measure λ (not only on R or Rn).

5.1 Basic notions of measure theory

In 1924 Banach and Tarski managed to prove that there exists no volume map
vol : P(R3) → [0,∞) such that

1. vol(∅) = 0, vol([0, 1]3) = 1

2. X1, ..., Xk ∈ P(R3) pairwise disjoint, then

vol
( k⋃
i=1

Xi) =
k∑
i=1

vol(Xi)

3. Invariant under transformations. Let v ∈ R3, A ∈ O(3), X ∈ R3, then

vol({Ax+ v : x ∈ X}) =: vol(A ·X + v) = vol(X)

To circumvent this problem σ-algebras and measure theory was created.

Definition 5.4 (σ-algebra). A family A ⊂ P(X) of subsets of a set X is called
σ-algebra, if

1. ∅ ∈ A

2. A ∈ A ⇒ AC ∈ A

3. Ak ∈ A for k ∈ N ⇒
∞⋃
k=1

Ak ∈ A

The elements of A are called the A-measurable sets.

Proposition 5.5. Let A be a σ-algebra on X. Then

1. X ∈ A

2. Ak ∈ A for k ∈ N ⇒
∞⋂
k=1

Ak ∈ A

3. A,B ∈ A ⇒ A ∪B ∈ A, A ∩B ∈ A, and A\B ∈ A
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Exercise 5.1. Proof Proposition 5.5.

Example 5.6. 1. P(X) and {∅, X} are σ-algebras on X

2. If Aj , j ∈ I are, σ-algebras on X, so is
⋂
j∈I

Aj

Theorem 5.7 (Generating system). Let F ⊂ P(X). Then the σ-algebra gener-
ated by F is:

AF =
⋂

B is σ-alg.
F⊂B

B

Any F ⊂ P(X) that generates A is called generating system for A.

Definition 5.8 (Borel σ-algebra). Let (X, T ) be a topological space. Then

AT = B

is called the Borel σ-algebra on X.

Definition 5.9 (Measure). Let A ⊂ P(X) be a σ-algebra. A map µ : A → [0,∞]
is called a measure, if

1. µ(∅) = 0

2. For pairwise disjoint sets Ak ∈ A, k ∈ N,

µ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak) (σ-additivity)

We further call µ

1. a finite measure, µ(X) <∞,

2. a σ-finite measure, if there exists a decomposition X =
∞⋃
k=1

Ak such that

µ(Ak) <∞ ∀k.

The pair (X,A) is called a measurable space, the triple (X,A, µ) is called a
measure space.

Example 5.10. Let X be a set and x0 ∈ X. Then

v : P(X) → [0,∞], A 7→ v(A) =

{
|A| if A is finite
∞ otherwise

"counting measure"

and

δx0 : P(X) → [0,∞], A 7→ δx0(A) =

{
1 if x0 ∈ A

0 otherwise
"Dirac measure at x0”

are measures.
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Proposition 5.11. Let µ be a measure on (X,A) and A,B ∈ A. Then

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B)

and if A ⊂ B

µ(B) = µ(A) + µ(B\A) ⇒ µ(A) ≤ µ(B). monotony

For Aj ∈ A, j ∈ N,

µ
( ∞⋃
j=1

Aj

)
≤
∞∑
j=1

µ(Aj) sub-additivity

and if Aj ⊂ Aj+1 ∀j, then

lim
j→∞

µ(Aj) = µ
( ∞⋃
j=1

Aj

)
Definition 5.12 (Measurable function and the push-forward of a measure).
Let (X,A) and (Y, C) be measure spaces. A map f : X → Y is called A- C-
measurable, if

C ∈ C ⇒ f−1(C) ∈ A.
If µ is a measure on (X,A) then

f∗µ : C → [0,∞], C 7→ f∗µ(C) = µ
(
f−1(C)

)
is called its push-forward under f .

Remark 5.13 (Terminology from probability theory). A measure space (X,A, µ)
with µ(X) = 1 is called a probability space. Then the elements A ∈ A are called
events and µ(A) the probability of the event. Measurable functions f : X →
Y , (Y, C) a measurable space, are called random variables and the probability
measure f∗µ is called the distribution of f .

Theorem 5.14 (Lebesgue measure). There is a unique measure λ on (Rn,B) that
is translation invariant (i.e. λ(A+ x) = λ(A), ∀A ∈ B∀x ∈ Rn) and normalised
to λ((0, 1)n) = 1. It is called the Lebesgue-Borel measure and its completion is
called the Lebesgue measure.

Exercise 5.2. Show that λ(Q) = 0.

5.2 Basic notions of integration theory

Definition 5.15 (Simple function).
A function g : X → R = R∪ {−∞,+∞} is called simple, if g(X) = {α1, . . . , αk}
is finite, i.e.

g(x) =

k∑
j=1

αjχAj (x) with Aj ∩Ai = ∅ for i ̸= j
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Definition 5.16 (Integral of non-negative measurable functions).
Let (X,A, µ) be a measure space and g : X → [0,∞] a simple and measurable,
then ∫

X

g dµ =
k∑
j=1

αjµ(Aj)

For a measurable function f : X → [0,∞]∫
X

f dµ = sup
{∫
X

g dµ
∣∣∣ g : X → [0,∞] simple, measurable and g ≤ f

}
Definition 5.17 (Integral of measurable functions).
A measurable function f : X → R is integrable, if for f+ = max{f, 0} and
f− = max{−f, 0} it holds that∫

f+ dµ <∞
∫
f− dµ <∞.

Then ∫
f dµ =

∫
f+ dµ−

∫
f− dµ

Proposition 5.18. Let f, g : X → R be measurable and integrable and α ∈ R.
Then

1.
∫
αf dµ = α

∫
f dµ

2.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ

3. f ≤ g ⇒
∫
f dµ ≤

∫
g dµ

Theorem 5.19 (Beppo-Levi, Monotone convergence). Let fn : X → [0,∞]
measurable and fn ≤ fn+1 for all n ∈ N. Let f := lim

n→∞
fn (pointwise), then

lim
n→∞

∫
fn dµ =

∫
f dµ

Corollary 5.20. Let fn : X → [0,∞] be measurable. Then∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ

Definition 5.21 (Almost everywhere).
We say that a property of a point x ∈ X holds almost surely or almost everywhere
with respect to a measure µ on X, if it holds for x ∈ A ⊂ X and

µ(X\A) = 0,

i.e. if it fails to hold a null set only.
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Example 5.22. 1. A real number is almost surely irrational with respect to
Lebesgue’s measure on R.

2. Let f : X → [0,∞] be measurable. Then∫
X

f dµ = 0 ⇔ f = 0 almost everywhere

3. Changing an integrable function f on a null set does not change
∫
f dµ.

4. For integrable functions we do not include ±∞ into the range anymore.

Remark 5.23. 1. Every Rieman integrable function f : [a, b] → R is also
Lebesgue integrable and the integrals coincide.

2. A function f : X → C is integrable, if |f | is integrable and∫
f dµ =

∫
Re f dµ+ i

∫
Imf dµ

3. Analogously for f : X →W (W -finite dimensional).

4. For f : X →W , W a Banach space, the generalisation is called the Bochner
integral.

Definition 5.24 (Lp-spaces).
Let (X,A, µ) be a measure space and 1 ≤ p <∞. Then

Lp(X,µ) = {f : X → C | f is measurable and |f |p is integrable}

and for f ∈ Lp(X,µ)

∥f∥Lp =

(∫
|f |p dµ

) 1
p

<∞ .

Moreover, Lp(X,µ) = Lp(X,µ)/ ∼ with respect to the equivalence relation

f ∼ g ⇔ f = g almost everywhere .

Theorem 5.25 (Completeness of Lp-spaces). Let (X,A, µ) be a measure space
and 1 ≤ p ≤ ∞. Then (Lp(X,µ), ∥ · ∥Lp) is a Banach space.

Theorem 5.26 (Dominated convergence). Let fn : X → C be measurable, n ∈ N,
and assume that f(x) = lim

n→∞
fn(x) exists for almost all x ∈ X. If for some

g ∈ Lp(X,µ), 1 ≤ p < ∞ it holds that |fn| ≤ |g| almost everywhere and for all
n ∈ N then fn, f ∈ Lp(X,µ) and

lim
n→∞

∥fn − f∥Lp = 0

i.e. fn → f in Lp(X,µ).
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Definition 5.27 (L∞ and the essential supremum).
Let (X,A, µ) be a measure space. For measurable f : X → C (|f | : X → [0,∞])
we define

∥f∥L∞ = inf
{
0 ≤ λ ≤ ∞ | µ

(
|f |−1((λ,∞])

)
= 0

}
= ess sup |f |.

Using this definition one can define

L∞(X) = {f : X → C | f measurable and ∥f∥L∞ <∞}

and
L∞(X) = L∞(X)/ ∼

Example 5.28. 1. If µ(X) <∞ and f ∈ L∞(X), then∫
X

|f | dµ ≤
∫
X

∥f∥L∞︸ ︷︷ ︸
=∥f∥∞

dµ = ∥f∥L∞ · µ(X)

In particular L∞(X) ⊂ L1(X) in this case. Actually, Lp(X) ⊂ Lq(X) if
p > q and µ(X) <∞.

2. X = Rn, µ = λn, then µ(X) = ∞ and Item 1 does not apply. We prove
this by the following: Let α ∈ R

fα : Rn \{0} → R, x 7→ fα(x) =
1

∥x∥α

(a) A = B1(0) ⊂ Rn. Then for α > 0,

∫
B1(0)

|fα|p dλ =

∫
B1(0)

1

∥x∥α+p
dλ = Cn

1∫
0

1

rαp
rn−1 dr

= Cn

1∫
0

1

rαp+1−n dr =

{
<∞ if α < n

p

= ∞ if α ≥ n
p

We also could have used Lp(B1(0)) ⊊ Lq(B1(0)) for p ≥ q.

(b) A = Rn \B1(0). Then

∫
A

|fα|p dλ =

∫
A

1

∥x∥α+p
dλ = Cn

∞∫
1

1

rαp
rn−1 dr

= Cn

∞∫
1

1

rαp+1−n dr =

{
<∞ if α > n

p

= ∞ if α ≤ n
p
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Putting both together we can conclude that neither Lp(Rn) ⊂ Lq(Rn) nor
Lq(Rn) ⊂ Lp(Rn) for p ̸= q.

3. At last we want to show that pointwise convergence does not imply conver-
gence in the Lp-norm. Let fn : R → R, x 7→ χ[n,n+1](x). Then for all p ≥ 1

fn ∈ Lp with ∥fn∥p = 1 and fn
p.w.−→ f = 0, but

∥fn − f∥Lp = ∥fn∥Lp = 1 .

This is because there exists no dominating function.

Theorem 5.29 (Hölder inequality). Let f, g : X → C be measurable and 1 ≤
p, q ≤ ∞ such that 1

p +
1
q = 1 (conjugated exponents) where 1

∞ = 0. Then

∥fg∥L1 ≤ ∥f∥Lp · ∥g∥Lq

Remark 5.30. For p = q = 2 this is the Cauchy-Schwarz inequality on the Hilbert
space L2. Hence for f, g ∈ L2 ⇒ fg ∈ L1, since∣∣∣ ∫ fg dµ

∣∣∣
=|⟨f,g|f,g⟩L2 |

≤
∫

|fg| dµ ≤ ∥f∥L2 · ∥g∥L2 .

Theorem 5.31 (Minkowski inequality). Let f, g : X → C be measurable and
1 ≤ p ≤ ∞. Then

∥f + g∥p ≤ ∥f∥p + ∥g∥p .

5.3 Product measures and Fubini’s theorem

Definition 5.32 (Product σ-algebras).
Let (X1,A1) and (X2,A2) be measurable spaces. Then A1 ⊗ A2 denotes the
product σ-algebra on X1 ×X2 generated by sets of the form A1 ×A2 ⊂ X1 ×X2

with A1 ∈ A1 and A2 ∈ A2, the so called product σ-algebra.

Example 5.33. Let Bn ⊂ P(Rn) be the Borel-σ-algebra. Then Bn = B1 ⊗ . . .⊗
B1.

Theorem 5.34. Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure spaces.
There exists a unique measure µ on A1 ⊗A2 such that for all A1 ∈ A1, A2 ∈ A2

µ(A1 ×A2) = µ1(A1) · µ2(A2),

called the product measure and denoted by µ = µ1 ⊗ µ2.

Example 5.35. The Lebesgue-Borel measure

λn = λ1 ⊗ . . .⊗ λ1.
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Theorem 5.36 (Tonelli). Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure
spaces. Let f : X1 ×X2 → [0,∞] be A1 ⊗A2-mensurable. Then∫

X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

( ∫
X2

fx1 dµ2

︸ ︷︷ ︸
fct. of x1

)
dµ1

=

∫
X2

( ∫
X1

fx2 dµ1

)
dµ2

where fx1 : X2 → R, x2 7→ f(x1, x2).

Example 5.37. X1 = X2 = [0, 1], µ1 = λ1, µ2 = v the counting measure. Hence
(X2, µ2) is not σ-finite.

f : X1 ×X2 → [0,∞]

(x1, x2) 7→ δx1,x2 :=

{
1 if x1 = x2
0 otherwise

Now the results for the integrals. For the first integral, we calculate∫
f(x1, x2)︸ ︷︷ ︸
=fx2 (x1)

dµ1 = 0

and obtain ∫ (∫
fx2(x1) dµ1

)
dµ2 = 0

For the second integral, we calculate∫
f(x1, x2)︸ ︷︷ ︸
fx1 (x2)

dµ2 = 0 · µ2(χ{f=0}) + 1 · µ2(χ{f=1}) = 1

hence obtain ∫ (∫
fx1(x2) dµ2

)
dµ1 = 1.

I.e. the two integral do not agree.

Theorem 5.38 (Fubini). Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure
spaces and f : X1×X2 → C measurable. Then the following two statements hold.

1. We find the following equivalence:∫
X1

( ∫
X2

|fx1 | dµ2
)
dµ1 <∞ or

∫
X2

( ∫
X1

|fx2 | dµ1
)
dµ2 <∞

if and only if

f ∈ L1(X1 ×X2, µ1 ⊗ µ2) .
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2. If f ∈ L1(X1 ×X2, µ1 ⊗ µ2), then∫
X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

( ∫
X2

fx1dµ2

)
dµ1

=

∫
X2

( ∫
X1

fx2dµ1

)
dµ2

Example 5.39. X = N,A = P(N), µ = v counting measure. f : X → R,
n 7→ f(n) (real sequences). The integral is then defined as:∫

X

f dµ =
∞∑
n=1

f(n)

Now we consider g : X ×X → R, (n,m) 7→ g(n,m). There appears the question
of whether it is possible to change the order of summation. Fubini’s theorem
allows us to answer yes to that question in the case of absolute convergence.
Hence if

∑
m

∑
n
|g(n,m)| <∞, or equivalently with the summation order changed,

we can change the summation.


	5 Measure and integration theory
	5.1 Basic notions of measure theory
	5.2 Basic notions of integration theory
	5.3 Product measures and Fubini's theorem


