CHAPTER₁ Linear Algebra

Definition 1.1 (Vector space).

A vector space (or linear space) over a field $K(\mathbb{R}$ or $\mathbb{C})$ is a set V along with an addition

$$
+: V \times V \to V
$$

and a scalar multiplication

$$
\cdot:\mathbb{K}\times V\to V
$$

satisfying

- (i) additive associativity: $(u + v) + w = u + (v + w) \quad \forall u, v, w \in V$
- (ii) additive identity: $\exists 0 \in V : v + 0 = v \quad \forall v \in V$
- (iii) additive inverse: $\forall v \in V \exists (-v) \in V : v + (-v) = 0$
- (iv) additive commutativity: $u + v = v + u \quad \forall u, v \in V$.
- (v) distributivity from the left: $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v \quad \forall u, v \in V$ and $\lambda \in \mathbb{K}$
- (vi) distibutivity from the right: $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v \quad \forall v \in V$ and $\forall \lambda, \mu \in \mathbb{K}$
- (vii) multiplicative associativity: $(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v) \forall v \in V$ and $\forall \lambda, \mu \in \mathbb{K}$
- (viii) multiplicative identity: $1 \in \mathbb{K} : 1 \cdot v = v \quad \forall v \in V$

If a set $W \subset V$ forms a vector space under the same operation, it is called a linear subspace.

Remark 1.2. Properties (i)-(iv) can be summarised as saying that V with its addition forms an Abelian group. Property (v) says that the map

$$
\lambda: V \to V, v \mapsto \lambda \cdot v
$$

is a group homomorphism for each $\lambda \in \mathbb{K}$. The remaining properties are equivalent to saying that the map

$$
\mathbb{K} \to \mathrm{Hom}_{\mathrm{Grp}}(V, V), \, \lambda \mapsto \lambda \cdot
$$

is a homomorphism of rings.

1. LINEAR ALGEBRA 2

Definition 1.3 (Linear maps).

A map $f: V \to W$ between vector spaces (over the same field) is said to be *linear* if for all $\lambda \in \mathbb{K}$ and $u, v \in V$ it holds that

$$
f(u + v) = f(u) + f(v)
$$

$$
f(\lambda u) = \lambda f(u).
$$

A bijective linear map is called a linear isomorphism. We define the kernel and the image of the linear map by

$$
\ker L = \{ v \in V : L(v) = 0 \}
$$

and

Im
$$
f = \{w \in W : \exists v \in V, w = L(v)\}\
$$

respectively. The set of all linear maps between V and W is denoted by $\mathcal{L}(V, W)$.

Definition 1.4.

Let V be a vector space and $B = (v_1, v_2, ...)$ a tuple of vectors in V. The tuple B is said to be *linearly independent* if for every tuple of scalars $(\lambda_1, \lambda_2, \dots, \lambda_n)$

$$
\sum_{j=1}^{n} \lambda_j v_j = 0
$$

implies $\lambda_j = 0, \forall j \in \{1, \dots n\}.$

We say B spans V if any vector $v \in V$ can be written as a *linear combination* of elements of B, i.e. there exist scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$, such that

$$
v = \sum_{j=1}^{n} \lambda_j v_j.
$$

We call B a *basis* of V if it is both linearly independent and spans V .

Theorem 1.5 (Dimension theorem). Every vector space has a basis and all bases of a vector space have the same cardinality. This cardinality is called the dimension of the vector space.

Two vector spaces are isomorphic if and only if they have the same dimension.

Proposition 1.6. Every finite dimensional vector space over \mathbb{K} is isomorphic to \mathbb{K}^n for some $n \in \mathbb{N}$. Each choice of basis provides an isomorphism. A linear map $f: V \to W$ from an n-dimensional to an m-dimensional vector space can be represented by an $m \times n$ matrix.

Remark 1.7. The definition of a basis presented here is also called Hamel-basis. In the context of infinite-dimensional vector spaces equipped with a topology one usually uses so called Schauder-bases instead.

- Example 1.8. ³ is a three dimensional vector space and the Cartesian coordinate vectors $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ form a basis.
	- 2. $\mathbb C$ is a one dimensional vector space over $\mathbb C$ and a two dimensional vector space over \mathbb{R} .
	- 3. The space $\mathbb{M}_{n,m}(\mathbb{K})$ of all $n \times m$ matrices is a vector space over K with component-wise operations.
	- 4. For any two vector spaces V and W it holds that $\mathcal{L}(V, W)$ is a vector space under point-wise operations.
	- 5. The Polynomial ring $\mathbb{K}[X]$ is an infinite dimensional vector space and $(1, X, X^2, X^3, \dots)$ is a basis.
	- 6. The space $C(\mathbb{R}, \mathbb{R})$ of continuous real-valued functions on \mathbb{R} is an infinite dimensional vector space with no countable basis.

Definition 1.9.

Let V be a vector space and W a subspace of V. The quotient space V/W is defined as the set of equivalence classes under the relation

 $u \sim v \iff u - v \in W$

together with the natural addition and scalar multiplication.

Theorem 1.10 (Isomorphism Theorem).

Let $f: V \to W$ be a linear map. The quotient space $V/\text{ker}(f)$ is isomorphic to $\text{Im}(f)$

Proposition 1.11.

Let V be a finite dimensional vector space and W a subspace of V. It holds that

$$
\dim(V/W) = \dim(V) - \dim(W).
$$

Theorem 1.12 (The Rank nullity theorem). Let $f: V \to W$ be a linear map and suppose that V is finite dimensional. Then,

$$
\dim(V) = \dim(\ker f) + \dim(\operatorname{Im} f).
$$

Definition 1.13 (Eigenvalues and eigenvectors). Let $f \in \mathcal{L}(V, V)$ be a linear map. We say that a scalar λ is an *eigenvalue* of f

with *eigenvector* $v \in V$ whenever

$$
f(v) = \lambda v
$$

holds. The linear subspace ker(f – λ id_V) is called the *eigenspace* of λ . The set of all eigenvaules $\sigma(f)$ is called the *spectrum* of f.

1. LINEAR ALGEBRA 4

Definition 1.14 (Inner product).

An *inner product* on a vector space V over K is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ satisfying

- 1. $\langle v, w \rangle = \overline{\langle w, v \rangle}, \quad \forall v, w \in V.$
- 2. $\langle \lambda v + w, u \rangle = \lambda \langle v, u \rangle + \langle w, u \rangle$, $\forall v, w, u \in V$.
- 3. $\langle v, v \rangle > 0$, $\forall v \in V \setminus \{0\}$.

A vector space together with an inner product is called an inner product space.

Definition 1.15. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and $f \in \mathcal{L}(V, V)$. We denote by f^* the unique linear map that satisfies

$$
\langle f(v), w \rangle = \langle v, f^*(w) \rangle, \qquad \forall v, w \in V
$$

it is called the adjoint of f. We call f normal if $f \circ f^* = f^* \circ f$ and self-adjoint if $f = f^*$.

Remark 1.16. In the finite dimensional case, all the above concepts have their matrix counterpart: once we fix a basis on each vector space, vectors and linear maps are uniquely represented by their component matrices.

Theorem 1.17 (Finite dimensional Spectral theorem). Let V be a finite dimensional complex (real) inner product space and consider a linear map $f \in \mathcal{L}(V, V)$. If f is normal, then there exists a basis of V consisting of eigenvectors of f.

1. LINEAR ALGEBRA 5

Exercises

- 1. Let $L \in \mathcal{L}(V, W)$ be a linear map between vector spaces. Show the following:
	- (i) ker L and Im L are linear subspaces of V and W respectively.
	- (ii) L is injective if and only if ker $L = \{0\}.$
- (iii) If $\dim(V) = \dim(W)$, then L is injective if and only if it is surjective.

2. Let V, W be finite dimensional real vector spaces. Prove the following isomorphisms:

- (i) $\mathbb{C} \cong \mathbb{R}^2$ (\mathbb{C} as a real vector space).
- (ii) $\mathcal{L}(\mathbb{R}, \mathbb{R}^n) \cong \mathbb{R}^n$.
- (iii) $V \cong \mathbb{R}^n$ for some $n \in \mathbb{N}$.
- (iv) $\mathcal{L}(V, W) \cong \mathbb{R}^{dim(V) \times dim(W)}$.

3. Consider three maps $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$ acting as shown in the image below. Select whether the following statements are true or false.

- (i) f and h are linear but g is not.
- (ii) f and g are linear but h is not.
- (iii) f has a positive real eigenvalue.
- (iv) g has a unique real eigenvalue.
- (v) Any vector of \mathbb{R}^2 is an eigenvector of h.

1. Linear Algebra 6

