
Chapter 1

Linear Algebra

Definition 1.1 (Vector space).
A vector space (or linear space) over a field K (R or C) is a set V along with an
addition

+ : V × V → V

and a scalar multiplication
· : K× V → V

satisfying

(i) additive associativity: (u+ v) + w = u+ (v + w) ∀u, v, w ∈ V

(ii) additive identity: ∃ 0 ∈ V : v + 0 = v ∀v ∈ V

(iii) additive inverse: ∀ v ∈ V ∃(−v) ∈ V : v + (−v) = 0

(iv) additive commutativity: u+ v = v + u ∀u, v ∈ V .

(v) distributivity from the left: λ ·(u+v) = λ ·u+λ ·v ∀u, v ∈ V and λ ∈ K

(vi) distibutivity from the right: (λ+µ)·v = λ·v+µ·v ∀ v ∈ V and ∀λ, µ ∈ K

(vii) multiplicative associativity: (λµ) · v = λ · (µ · v)∀ v ∈ V and ∀λ, µ ∈ K

(viii) multiplicative identity: 1 ∈ K : 1 · v = v ∀v ∈ V

If a set W ⊂ V forms a vector space under the same operation, it is called a
linear subspace.

Remark 1.2. Properties (i)-(iv) can be summarised as saying that V with its
addition forms an Abelian group. Property (v) says that the map

λ· : V → V, v 7→ λ · v

is a group homomorphism for each λ ∈ K. The remaining properties are equiva-
lent to saying that the map

K → HomGrp(V, V ), λ 7→ λ·

is a homomorphism of rings.
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Definition 1.3 (Linear maps).
A map f : V → W between vector spaces (over the same field) is said to be
linear if for all λ ∈ K and u, v ∈ V it holds that

f(u+ v) = f(u) + f(v)

f(λu) = λf(u) .

A bijective linear map is called a linear isomorphism. We define the kernel and
the image of the linear map by

kerL = {v ∈ V : L(v) = 0}

and
Im f = {w ∈W : ∃v ∈ V , w = L(v)}

respectively. The set of all linear maps between V and W is denoted by L(V,W ).

Definition 1.4.
Let V be a vector space and B = (v1, v2, . . .) a tuple of vectors in V . The tuple
B is said to be linearly independent if for every tuple of scalars (λ1, λ2, . . . λn)

n∑
j=1

λjvj = 0

implies λj = 0, ∀j ∈ {1, . . . n}.
We say B spans V if any vector v ∈ V can be written as a linear combination of
elements of B, i.e. there exist scalars λ1, . . . , λn ∈ K, such that

v =
n∑
j=1

λjvj .

We call B a basis of V if it is both linearly independent and spans V .

Theorem 1.5 (Dimension theorem). Every vector space has a basis and all bases
of a vector space have the same cardinality. This cardinality is called the dimen-
sion of the vector space.

Two vector spaces are isomorphic if and only if they have the same dimension.

Proposition 1.6. Every finite dimensional vector space over K is isomorphic to
Kn for some n ∈ N. Each choice of basis provides an isomorphism. A linear
map f : V →W from an n-dimensional to an m-dimensional vector space can be
represented by an m× n matrix.

Remark 1.7. The definition of a basis presented here is also called Hamel-basis.
In the context of infinite-dimensional vector spaces equipped with a topology one
usually uses so called Schauder-bases instead.
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Example 1.8. 1. R3 is a three dimensional vector space and the Cartesian
coordinate vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) form a
basis.

2. C is a one dimensional vector space over C and a two dimensional vector
space over R.

3. The space Mn,m(K) of all n × m matrices is a vector space over K with
component-wise operations.

4. For any two vector spaces V and W it holds that L(V,W ) is a vector space
under point-wise operations.

5. The Polynomial ring K[X] is an infinite dimensional vector space and
(1, X,X2, X3, . . . ) is a basis.

6. The space C(R,R) of continuous real-valued functions on R is an infinite
dimensional vector space with no countable basis.

Definition 1.9.
Let V be a vector space and W a subspace of V . The quotient space V/W is
defined as the set of equivalence classes under the relation

u ∼ v ⇐⇒ u− v ∈W

together with the natural addition and scalar multiplication.

Theorem 1.10 (Isomorphism Theorem).
Let f : V → W be a linear map. The quotient space V/ker(f) is isomorphic to
Im(f)

Proposition 1.11.
Let V be a finite dimensional vector space and W a subspace of V . It holds that

dim(V/W ) = dim(V )− dim(W ) .

Theorem 1.12 (The Rank nullity theorem).
Let f : V →W be a linear map and suppose that V is finite dimensional. Then,

dim(V ) = dim(ker f) + dim(Im f) .

Definition 1.13 (Eigenvalues and eigenvectors).
Let f ∈ L(V, V ) be a linear map. We say that a scalar λ is an eigenvalue of f
with eigenvector v ∈ V whenever

f(v) = λv

holds. The linear subspace ker(f − λidV ) is called the eigenspace of λ. The set
of all eigenvaules σ(f) is called the spectrum of f .
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Definition 1.14 (Inner product).
An inner product on a vector space V over K is a map ⟨·, ·⟩ : V ×V → K satisfying

1. ⟨v, w⟩ = ⟨w, v⟩, ∀v, w ∈ V .

2. ⟨λv + w, u⟩ = λ⟨v, u⟩+ ⟨w, u⟩, ∀v, w, u ∈ V .

3. ⟨v, v⟩ > 0, ∀v ∈ V \ {0}.

A vector space together with an inner product is called an inner product space.

Definition 1.15. Let (V, ⟨·, ·⟩) be an inner product space and f ∈ L(V, V ). We
denote by f∗ the unique linear map that satisfies

⟨f(v), w⟩ = ⟨v, f∗(w)⟩, ∀v, w ∈ V

it is called the adjoint of f . We call f normal if f ◦ f∗ = f∗ ◦ f and self-adjoint
if f = f∗.

Remark 1.16. In the finite dimensional case, all the above concepts have their
matrix counterpart: once we fix a basis on each vector space, vectors and linear
maps are uniquely represented by their component matrices.

Theorem 1.17 (Finite dimensional Spectral theorem). Let V be a finite dimen-
sional complex (real) inner product space and consider a linear map f ∈ L(V, V ).
If f is normal, then there exists a basis of V consisting of eigenvectors of f .
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Exercises

1. Let L ∈ L(V,W ) be a linear map between vector spaces. Show the following:

(i) kerL and ImL are linear subspaces of V and W respectively.

(ii) L is injective if and only if kerL = {0}.

(iii) If dim(V ) = dim(W ), then L is injective if and only if it is surjective.

2. Let V,W be finite dimensional real vector spaces. Prove the following isomor-
phisms:

(i) C ∼= R2 (C as a real vector space).

(ii) L(R,Rn) ∼= Rn.

(iii) V ∼= Rn for some n ∈ N.

(iv) L(V,W ) ∼= Rdim(V )×dim(W ).

3. Consider three maps f, g, h : R2 → R2 acting as shown in the image below.
Select whether the following statements are true or false.

(i) f and h are linear but g is not.

(ii) f and g are linear but h is not.

(iii) f has a positive real eigenvalue.

(iv) g has a unique real eigenvalue.

(v) Any vector of R2 is an eigenvector of h.
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