Exercises

- 1. (Proposition 6.4) Let A be a σ -algebra on X. Show that
 - 1. $X \in \mathcal{A}$
 - 2. $A_k \in \mathcal{A} \text{ for } k \in \mathbb{N} \implies \bigcap_{k \in \mathbb{N}} A_k \in \mathcal{A}$
 - 3. $A, B \in \mathcal{A} \implies A \cup B, A \cap B, A \setminus B \in \mathcal{A}$
- **2.** (Proposition 6.10) Let μ be a measure on (X, \mathcal{A}) and $A, B \in \mathcal{A}$. Show that
 - (i) if $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
 - (ii) if $A \subset B$, then $\mu(A) \leq \mu(B)$.
- (iii) For $A_j \in \mathcal{A}, j \in \mathbb{N}$,

$$\mu\Big(\bigcup_{j=1}^{\infty} A_j\Big) \le \sum_{j=1}^{\infty} \mu(A_j).$$

(iv) If $A_j \subset A_{j+1}$ then

$$\lim_{j \to \infty} \mu(A_j) = \mu(\bigcup_{j=1}^{\infty} A_j).$$

- **3.** Find an example of
 - (a) a sequence in $L^p([0,1])$ that converges pointwise but not in L^p to a function in $L^p([0,1])$.
 - (b) a sequence in $L^p([0,1])$ that converges in L^p but not almost everywhere.