Propagation of Chaos

Prof. Dr. P. Pickl

Sheet 10

Exercise 1: Let $\Psi \in L^2(\mathbb{R}^{3N})$ and μ^{Ψ} be the respective reduced one-particle density matrix. Show that μ^{Ψ} is a positive, self-adjoint operator of trace one.

Exercise 2: Let A be an operator on a given Hilbert space \mathcal{H} of dimension $d < \infty$. Show that the trace norm can be alternatively defined via

$$||A||_{tr} = \operatorname{tr}\left(\sqrt{AA^{\dagger}}\right) \;.$$

Here A^{\dagger} stands for the adjoint of A.

Exercise 3: Let $\phi \in L^2(\mathbb{R}^3)$ with $\|\phi\| = 1$. Show that for any $j \in 1, ..., N$ the operator $p_j^{\phi} := 1 \otimes 1 \otimes ... \otimes |\phi\rangle \langle \phi| \otimes 1 \otimes ... \otimes 1$ is a projector on $L^2(\mathbb{R}^{3N})$. Show that for any $\Psi \in L^2(\mathbb{R}^{3N})$

$$\operatorname{tr}(p_1^{\phi}\mu^{\Psi}) = \langle \Psi, p_1^{\phi}\Psi \rangle$$

Exercise 4: Let \mathcal{V} be a normed vector space. On the set of operators on \mathcal{V} the operatornorm is defined via

$$\|T\|_{op} := \sup_{\Psi \in \mathcal{V} \setminus 0} \frac{\|T\Psi\|}{\|\Psi\|}$$

Assuming that \mathcal{V} is a Hilbert space we can define for any given orthonormal basis $\mathcal{B} := \{b_1, b_2, \ldots\}$ the norm $\|\cdot\|_{\mathcal{B}}$ via

$$||T||_{\mathcal{B}} = \sup_{1 \le i,j \le d} |\langle b_i, Tb_j \rangle| .$$

Here $d \in \mathcal{N} \cup \{\infty\}$ is the dimension of the vector space.

Show that $\|\cdot\|_{\mathcal{B}}$ is in fact a norm and that in the case of finite dimension

$$\|\cdot\|_{\mathcal{B}} \le \|\cdot\|_{op} \le d\|\cdot\|_{\mathcal{B}}.$$

Show that for $d = \infty$ the operator norm is neither equivalent to $\|\cdot\|_{\mathcal{B}}$ nor to $\|\cdot\|_{tr}$.