Propagation of Chaos

Prof. Dr. P. Pickl

Sheet 5

Aufgabe 1: Let $A_t = (X_t, V_t)$ and $A_t = (X_t, V_t)$ be given via

$$
\dot{x}_t^j = v_t^j \qquad \dot{v}_t^j = f^{ext}(x_j) + \frac{1}{N-1} \sum_{j \neq k} f(x_t^j - x_t^k)
$$

$$
\dot{x}_t^j = \overline{v}_t^j \qquad \dot{\overline{v}}_t^j = f^{ext}(\overline{x}_j) + \overline{f}(\overline{x}_t^j)
$$

Assume that $||f^{ext}||_L < \infty$, $||f||_L < \infty$ and $||f||_{\infty} < \infty$. Show that for any $t \geq 0$

$$
\lim_{N\to\infty}\mathbb{E}\left(\left\|A_t-\overline{A}_t\right\|_{\infty}\right)=0.
$$

Aufgabe 2: Consider the system of exercise 1. Find a function $g(t)$ with

$$
\lim_{N \to \infty} g(t) = 0 \,\forall t \in \mathbb{R}_0^+
$$

such that

$$
\mathbb{E}\left(\left[\left\|A_t - \overline{A}_t\right\|_{\infty} - g(t)\right]_+\right)
$$

is, for sufficiently large N , smaller than any polynomial in N . Here $[h]^+$ stands for the positive part of the function, i.e. $[h]^+ = 0$ if $h \leq 0$, $[h]^+ = h$ if $h > 0$.

Aufgabe 3: Let N be even. In this exercise we consider the solution of N Newtonian particles in two spacial dimensions, i.e. the one-body phase space has dimension 4.

Assume that the interaction potential is repulsive Coulomb with $\frac{1}{N}$ -coupling, i.e. the force for each particle is given by

$$
\dot{x}_t^j := \frac{1}{N} \sum_{k \neq j} \frac{x_j - x_k}{|x_j - x_k|^3} \; .
$$

Assume that at time $t = 0$ the velocities of all particles are zero and that they are distributed on a uni-circle of radius $N^{-1/2}$, centered at the origin. That means, in polar coordinates $x_j = (N^{-1/2}, \frac{2\pi j}{N})$ $\frac{2\pi j}{N}$).

Show that $\lim_{N\to\infty} |x_t^j|$ $t_l^j = \infty$ for any $t > 0$ and any $j \in \{1, \ldots, N\}.$