Foundations of Quantum Mechanics: Assignment 12

Exercise 47: Essay question. (25 points)
Describe Einstein's boxes argument.
Exercise 48: Can't distinguish non-orthogonal state vectors with POVMs (25 points)
In Exercise 25(b) in Assignment 6, it was shown that Bob, when allowed to use a quantum measurement of any self-adjoint operator on a given particle, is unable to decide with certainty whether the quantum state was $(1,0)$ or $\frac{1}{\sqrt{2}}(1,1)$. What if Bob is allowed to use any experiment whatsoever? Use the main theorem about POVMs.

Exercise 49: POVMs (25 points)
(a) Suppose E_{1} and E_{2} are POVMs on \mathscr{Z}_{1} and \mathscr{Z}_{2}, respectively, both acting on \mathscr{H}; let $q_{1}, q_{2} \in[0,1]$ with $q_{1}+q_{2}=1$. Show that $E(B):=q_{1} E_{1}\left(B \cap \mathscr{Z}_{1}\right)+q_{2} E_{2}\left(B \cap \mathscr{Z}_{2}\right)$ defines a POVM on $\mathscr{Z}_{1} \cup \mathscr{Z}_{2}$.
(b) Suppose experiment \mathscr{E}_{1} has distribution of outcomes $\langle\psi| E_{1}(\cdot)|\psi\rangle$, and \mathscr{E}_{2} has distribution of outcomes $\langle\psi| E_{2}(\cdot)|\psi\rangle$. Describe an experiment with distribution of outcomes $\langle\psi| E(\cdot)|\psi\rangle$.
(c) Give an example of a POVM for which the E_{z} do not pairwise commute. Suggestion: Choose $E_{1}(z)$ that does not commute with $E_{2}\left(z^{\prime}\right)$ for $\mathscr{Z}_{1} \cap \mathscr{Z}_{2}=\emptyset$.

Exercise 50: Main theorem about POVMs (25 points)
The proof of the main theorem from Bohmian mechanics assumes that at the initial time t_{i} of the experiment, the joint wave function factorizes, $\Psi_{t_{i}}=\psi \otimes \phi$. What if factorization is not exactly satisfied, but only approximately? Then the probability distribution of the outcome Z is still approximately given by $\langle\psi| E(\cdot)|\psi\rangle$. To make this statement precise, suppose that

$$
\begin{equation*}
\Psi_{t_{i}}=c \psi \otimes \phi+\Delta \Psi \tag{1}
\end{equation*}
$$

where $\|\Delta \Psi\| \ll 1$ (you can use $\|\Delta \Psi\|<1 / 2$), $\|\psi\|=\|\phi\|=1$, and $c=\sqrt{1-\|\Delta \Psi\|^{2}}$ (which is close to 1). Use the Cauchy-Schwarz inequality,

$$
\begin{equation*}
|\langle f \mid g\rangle| \leq\|f\|\|g\|, \tag{2}
\end{equation*}
$$

to show that, for any $B \subseteq \mathscr{Z}$,

$$
\begin{equation*}
|\mathbb{P}(Z \in B)-\langle\psi| E(B)| \psi\rangle \mid<3\|\Delta \Psi\| . \tag{3}
\end{equation*}
$$

Hand in: by Tuesday January 30, 2024, 8:15am

Reading assignment due Thursday February 1, 2024:
J. Bell: Against 'measurement.' Physics World, August 1990, pages 33-40.

