Foundations of Quantum Mechanics: Assignment 12

Exercise 47: Essay question. (25 points)

Describe Einstein's boxes argument.

Exercise 48: Can't distinguish non-orthogonal state vectors with POVMs (25 points) In Exercise 25(b) in Assignment 6, it was shown that Bob, when allowed to use a quantum measurement of *any self-adjoint operator* on a given particle, is unable to decide with certainty whether the quantum state was (1,0) or $\frac{1}{\sqrt{2}}(1,1)$. What if Bob is allowed to use *any experiment whatsoever*? Use the main theorem about POVMs.

Exercise 49: POVMs (25 points)

(a) Suppose E_1 and E_2 are POVMs on \mathscr{Z}_1 and \mathscr{Z}_2 , respectively, both acting on \mathscr{H} ; let $q_1, q_2 \in [0, 1]$ with $q_1 + q_2 = 1$. Show that $E(B) := q_1 E_1(B \cap \mathscr{Z}_1) + q_2 E_2(B \cap \mathscr{Z}_2)$ defines a POVM on $\mathscr{Z}_1 \cup \mathscr{Z}_2$.

(b) Suppose experiment \mathscr{E}_1 has distribution of outcomes $\langle \psi | E_1(\cdot) | \psi \rangle$, and \mathscr{E}_2 has distribution of outcomes $\langle \psi | E_2(\cdot) | \psi \rangle$. Describe an experiment with distribution of outcomes $\langle \psi | E(\cdot) | \psi \rangle$.

(c) Give an example of a POVM for which the E_z do not pairwise commute. Suggestion: Choose $E_1(z)$ that does not commute with $E_2(z')$ for $\mathscr{Z}_1 \cap \mathscr{Z}_2 = \emptyset$.

Exercise 50: Main theorem about POVMs (25 points)

The proof of the main theorem from Bohmian mechanics assumes that at the initial time t_i of the experiment, the joint wave function factorizes, $\Psi_{t_i} = \psi \otimes \phi$. What if factorization is not exactly satisfied, but only approximately? Then the probability distribution of the outcome Z is still approximately given by $\langle \psi | E(\cdot) | \psi \rangle$. To make this statement precise, suppose that

$$\Psi_{t_i} = c\psi \otimes \phi + \Delta \Psi \,, \tag{1}$$

where $\|\Delta\Psi\| \ll 1$ (you can use $\|\Delta\Psi\| < 1/2$), $\|\psi\| = \|\phi\| = 1$, and $c = \sqrt{1 - \|\Delta\Psi\|^2}$ (which is close to 1). Use the Cauchy-Schwarz inequality,

$$\left|\langle f|g\rangle\right| \le \|f\| \,\|g\|\,,\tag{2}$$

to show that, for any $B \subseteq \mathscr{Z}$,

$$\left|\mathbb{P}(Z \in B) - \langle \psi | E(B) | \psi \rangle \right| < 3 \|\Delta \Psi\|.$$
(3)

Hand in: by Tuesday January 30, 2024, 8:15am

Reading assignment due Thursday February 1, 2024:

J. Bell: Against 'measurement.' Physics World, August 1990, pages 33-40.