Foundations of Quantum Mechanics: Assignment 11

Exercise 43: Essay question. (25 points)
Describe the Einstein-Podolsky-Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 44: Positive operators (25 points)
An operator $S: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ is positive (= positive semi-definite) iff $\langle\psi \mid S \psi\rangle \geq 0$ for all ψ. Are the following statements about operators on \mathbb{C}^{d} true or false? Justify your answers.
a) $R^{\dagger} R$ is always a positive operator.
b) If E is a positive operator, then so is $R^{\dagger} E R$.
c) The positive operators form a subspace of the space of self-adjoint operators.
d) The sum of two projections is positive only if they commute.
e) $e^{A t}$ is a positive operator for every self-adjoint A and $t \in \mathbb{R}$.

Exercise 45: Angles in Hilbert space (25 points)

In Chapter 2, I said that the angle θ between two vectors ϕ, χ in Hilbert space is $\theta=\arccos \frac{|\langle\phi \mid \chi\rangle|}{\|\phi \mid\| \chi \|}$. I take it back. In this exercise, we look at the reasons why the natural definition for θ actually is

$$
\begin{equation*}
\theta=\arccos \frac{\operatorname{Re}\langle\phi \mid \chi\rangle}{\|\phi\|\|\chi\|} \tag{1}
\end{equation*}
$$

while the one for the angle α between the 1 d subspaces $\mathbb{C} \phi, \mathbb{C} \chi$ is

$$
\begin{equation*}
\alpha=\arccos \frac{|\langle\phi \mid \chi\rangle|}{\|\phi\|\|\chi\|} . \tag{2}
\end{equation*}
$$

(a) For the most natural identification mapping $J: \mathbb{C}^{d} \rightarrow \mathbb{R}^{2 d}$ given by $J\left(\phi_{1}, \ldots, \phi_{d}\right)=$ $\left(\operatorname{Re} \phi_{1}, \operatorname{Im} \phi_{1}, \ldots, \operatorname{Re} \phi_{d}, \operatorname{Im} \phi_{d}\right)$, show that

$$
\begin{equation*}
\langle J \phi \mid J \chi\rangle_{\mathbb{R}^{2 d}}=\operatorname{Re}\langle\phi \mid \chi\rangle_{\mathbb{C}^{d}} \quad \text { and } \quad\|J \phi\|_{\mathbb{R}^{2 d}}=\|\phi\|_{\mathbb{C}^{d}} \tag{3}
\end{equation*}
$$

where $\langle x \mid y\rangle_{\mathbb{R}^{n}}=\sum_{i=1}^{n} x_{i} y_{i}$ and $\langle\phi \mid \chi\rangle_{\mathbb{C}^{d}}=\sum_{j=1}^{d} \phi_{j}^{*} \chi_{j}$, and the norms are accordingly defined.
(b) Explain by means of an example in \mathbb{R}^{3} why the intuitive notion of the angle β between two subspaces U, V of \mathbb{R}^{n} is given by

$$
\begin{equation*}
\beta=\inf _{u \in U \backslash\{0\}} \inf _{v \in V \backslash\{0\}} \theta(u, v), \tag{4}
\end{equation*}
$$

where $\theta(u, v)$ means the angle between u and v. We adopt the same definition in \mathbb{C}^{d}.
(c) Show that for $\phi, \chi \in \mathbb{C}^{d} \backslash\{0\}$,

$$
\begin{equation*}
\inf _{u \in \mathbb{C} \phi \backslash\{0\}} \inf _{v \in \mathbb{C} \chi \backslash\{0\}} \arccos \frac{\operatorname{Re}\langle u \mid v\rangle}{\|u\|\|v\|}=\arccos \frac{|\langle\phi \mid \chi\rangle|}{\|\phi\|\|\chi\|} \tag{5}
\end{equation*}
$$

Exercise 46: Sum of projections (25 points)
Let \mathscr{H} be a Hilbert space of finite dimension, let P_{1} and P_{2} be projections in $\mathscr{H}, P_{i}=P_{i}^{\dagger}$ and $P_{i}^{2}=P_{i}$, and let \mathscr{H}_{i} be the range of P_{i}. Show that if $Q:=P_{1}+P_{2}$ is also a projection $\left(Q=Q^{\dagger}\right.$ and $Q^{2}=Q$), then (a) $\mathscr{H}_{1} \perp \mathscr{H}_{2}$, and (b) the range \mathscr{K} of Q is the span of $\mathscr{H}_{1} \cup \mathscr{H}_{2}$.

Hand in: by Tuesday January 23, 2024, 8:15am

Reading assignment due Thursday January 25, 2024:
N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 48: 696-702 (1935)

