Foundations of Quantum Mechanics: Assignment 11

Exercise 43: Essay question. (25 points)

Describe the Einstein–Podolsky–Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 44: Positive operators (25 points)

An operator $S : \mathbb{C}^d \to \mathbb{C}^d$ is positive (= positive semi-definite) iff $\langle \psi | S \psi \rangle \geq 0$ for all ψ . Are the following statements about operators on \mathbb{C}^d true or false? Justify your answers.

- a) $R^{\dagger}R$ is always a positive operator.
- b) If E is a positive operator, then so is $R^{\dagger}ER$.
- c) The positive operators form a subspace of the space of self-adjoint operators.
- d) The sum of two projections is positive only if they commute.
- e) e^{At} is a positive operator for every self-adjoint A and $t \in \mathbb{R}$.

Exercise 45: Angles in Hilbert space (25 points)

In Chapter 2, I said that the angle θ between two vectors ϕ, χ in Hilbert space is $\theta = \arccos \frac{|\langle \phi | \chi \rangle|}{\|\phi\| \|\chi\|}$. I take it back. In this exercise, we look at the reasons why the natural definition for θ actually is

$$\theta = \arccos \frac{\operatorname{Re}\langle \phi | \chi \rangle}{\|\phi\| \|\chi\|}, \qquad (1)$$

while the one for the angle α between the 1d subspaces $\mathbb{C}\phi$, $\mathbb{C}\chi$ is

$$\alpha = \arccos \frac{|\langle \phi | \chi \rangle|}{\|\phi\| \|\chi\|} \,. \tag{2}$$

(a) For the most natural identification mapping $J : \mathbb{C}^d \to \mathbb{R}^{2d}$ given by $J(\phi_1, \ldots, \phi_d) = (\operatorname{Re} \phi_1, \operatorname{Im} \phi_1, \ldots, \operatorname{Re} \phi_d, \operatorname{Im} \phi_d)$, show that

$$\langle J\phi|J\chi\rangle_{\mathbb{R}^{2d}} = \operatorname{Re}\langle\phi|\chi\rangle_{\mathbb{C}^d} \quad \text{and} \quad \|J\phi\|_{\mathbb{R}^{2d}} = \|\phi\|_{\mathbb{C}^d},$$
(3)

where $\langle x|y\rangle_{\mathbb{R}^n} = \sum_{i=1}^n x_i y_i$ and $\langle \phi|\chi\rangle_{\mathbb{C}^d} = \sum_{j=1}^d \phi_j^* \chi_j$, and the norms are accordingly defined.

(b) Explain by means of an example in \mathbb{R}^3 why the intuitive notion of the angle β between two subspaces U, V of \mathbb{R}^n is given by

$$\beta = \inf_{u \in U \setminus \{0\}} \inf_{v \in V \setminus \{0\}} \theta(u, v), \qquad (4)$$

where $\theta(u, v)$ means the angle between u and v. We adopt the same definition in \mathbb{C}^d . (c) Show that for $\phi, \chi \in \mathbb{C}^d \setminus \{0\}$,

$$\inf_{u \in \mathbb{C}\phi \setminus \{0\}} \inf_{v \in \mathbb{C}\chi \setminus \{0\}} \arccos \frac{\operatorname{Re}\langle u | v \rangle}{\|u\| \|v\|} = \arccos \frac{|\langle \phi | \chi \rangle|}{\|\phi\| \|\chi\|} \,.$$
(5)

Exercise 46: Sum of projections (25 points)

Let \mathscr{H} be a Hilbert space of finite dimension, let P_1 and P_2 be projections in \mathscr{H} , $P_i = P_i^{\dagger}$ and $P_i^2 = P_i$, and let \mathscr{H}_i be the range of P_i . Show that if $Q := P_1 + P_2$ is also a projection ($Q = Q^{\dagger}$ and $Q^2 = Q$), then (a) $\mathscr{H}_1 \perp \mathscr{H}_2$, and (b) the range \mathscr{K} of Q is the span of $\mathscr{H}_1 \cup \mathscr{H}_2$.

Hand in: by Tuesday January 23, 2024, 8:15am

Reading assignment due Thursday January 25, 2024:

N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? *Physical Review* **48**: 696–702 (1935)