Foundations of Quantum Mechanics: Assignment 10

Exercise 38: Essay question. (15 points)

Explain why Schrödinger's theory Sm has a many-worlds character.

Exercise 39: Marginal and conditional distribution (18 points)

Consider two random variables X, Y that assume only values ± 1. Their joint distribution can be described by a 2×2 table of probabilities. (a) Give a generic example of such a table (i.e., one without symmetries). For your table, compute (b) the marginal distribution of X and (c) that of Y, as well as (d) the conditional distribution of X, given that $Y=+1$, (e) the expectation value $\mathbb{E}(X)$, and (f) $\mathbb{E}(X Y)$.

Exercise 40: Spin singlet state (17 points)
Verify through direct computation that in the spin space $\mathbb{C}^{4}=\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ of two spin- $\frac{1}{2}$ particles,

$$
\begin{align*}
& \mid x \text {-up }\rangle \mid x \text {-down }\rangle-\mid x \text {-down }\rangle \mid x \text {-up }\rangle \\
= & \mid y \text {-up }\rangle \mid y \text {-down }\rangle-\mid y \text {-down }\rangle \mid y \text {-up }\rangle \tag{1}\\
= & \mid z \text {-up }\rangle \mid z \text {-down }\rangle-\mid z \text {-down }\rangle \mid z \text {-up }\rangle
\end{align*}
$$

up to phase factors.
Exercise 41: Distinguish ensembles (20 points)
A source generates
(a) either 10,000 particle pairs in the spin singlet state

$$
\left.\left.\left.\left.\left.\left.\left.\left.\left.\frac{1}{\sqrt{2}}(\mid z \text {-up }\rangle \right\rvert\, z \text {-down }\right\rangle-\mid z \text {-down }\right\rangle \mid z \text {-up }\right\rangle\right) \left.=-\frac{1}{\sqrt{2}}(\mid x \text {-up }\rangle \right\rvert\, x \text {-down }\right\rangle-\mid x \text {-down }\right\rangle \mid x \text {-up }\right\rangle\right)
$$

(b) or, in a random order, 5,000 pairs in $\mid z$-up $\rangle \mid z$-down \rangle and 5,000 in $\mid z$-down $\rangle \mid z$-up \rangle
(c) or, in a random order, 5,000 pairs in $\mid x$-up $\rangle \mid x$-down \rangle and 5,000 in $\mid x$-down $\rangle \mid x$-up \rangle.

Alice and Bob are far from each other, and each receives one particle of every pair. By carrying out (local) Stern-Gerlach experiments on their particles and comparing their results afterwards, how can they decide whether the source was of type (a), (b), or (c)?

Exercise 42: Allcock's paradox ${ }^{1}$ (30 points)
Allcock considered a "soft detector," i.e., one for which the particle may fly through the detector volume for a while before being detected. An as effective description, Allcock proposed an imaginary potential. For example, for a single particle in 1d and a detector in the right half axis, he considered the Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}-i v 1_{x \geq 0} \psi \tag{2}
\end{equation*}
$$

with $v>0$ a constant. The time evolution then is not unitary.

[^0](a) Derive from (2) the continuity equation
\[

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\operatorname{div} j-\frac{2 v}{\hbar} 1_{x \geq 0} \rho \tag{3}
\end{equation*}
$$

\]

for $\rho=|\psi|^{2}$ and $j=\frac{\hbar}{m} \operatorname{Im}\left[\psi^{*} \partial \psi / \partial x\right]$. Eq. (3) is the evolution of the probability density of a particle that moves along Bohmian trajectories and disappears spontaneously (stochastically) at rate $2 v / \hbar$ whenever it stays in the region $x \geq 0 .\left\|\psi_{t}\right\|^{2}$ is a decreasing function of t and represents the probability that the particle has not been detected (and disappeared from the model) yet.
(b) To obain an effective description of a hard detector (i.e., one that will detect the particle as soon as it reaches the region $x \geq 0$), Allcock assumed that ψ_{0} is concentrated in $\{x<0\}$ and took the limit $v \rightarrow \infty$, but found that the particle never gets detected ($\left\|\psi_{t}\right\|^{2}=$ const.)! That is parallel to the quantum Zeno effect.

Prove the following simplified version: In a 2 d Hilbert space \mathbb{C}^{2}, let $\psi_{0}=(1,0)$ evolve with the (non-self-adjoint) Hamiltonian

$$
H_{v}=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
1 & -i v
\end{array}\right) .
$$

Then for every $t>0, \psi_{t}=e^{-i H_{v} t / \hbar} \psi_{0} \rightarrow \psi_{0}$ as $v \rightarrow \infty$.

Hand in: by Tuesday January 16, 2024, 8:15am

Reading assignment due Thursday January 18, 2024:
A. Einstein, B. Podolsky, N. Rosen: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 47: 777-780 (1935)

[^0]: ${ }^{1}$ G.R. Allcock: The time of arrival in quantum mechanics II. The individual measurement. Annals of Physics 53: 286-310 (1969)

