Foundations of Quantum Mechanics: Assignment 7

Exercise 26: Essay question (20 points)
Explain why the interference pattern in the double-slit experiment disappears if a detector measures through which slit the electron went, even if we ignore the outcome of the detection. Derive this fact from the projection postulate, using the observable P_{B} defined by $P_{B} \psi(\boldsymbol{x})=1_{B}(\boldsymbol{x}) \psi(\boldsymbol{x})$ as a model of a detector, where B is a suitable neighborhood of one slit. Explain why the pattern on the screen must be the same as if one slit were closed in each run, each slit in 50% of the runs. (Use formulas where appropriate.)

Exercise 27: Projections (30 points)
We defined a projection to be an operator P such that there is an $\operatorname{ONB}\left\{\phi_{n}: n \in \mathbb{N}\right\}$ diagonalizing $P, P \phi_{n}=\lambda_{n} \phi_{n}$, with eigenvalues λ_{n} that are 0 or 1 .
(a) Show that the projections are exactly the self-adjoint operators P with $P^{2}=P$.
(b) Suppose that $P: \mathscr{H} \rightarrow \mathscr{H}$ is a projection with range \mathscr{K}; one says that P is the projection to \mathscr{K}. Show that $I-P$ is the projection to the orthogonal complement of \mathscr{K}, i.e., to $\mathscr{K}^{\perp}=\{\phi \in \mathscr{H}:\langle\phi \mid \psi\rangle=0 \forall \psi \in \mathscr{K}\}$.
(c) Suppose that P is the projection to \mathscr{K}. Show that the element in \mathscr{K} closest to a given vector $\psi \in \mathscr{H}$ is $P \psi$.

Exercise 28: Iterated Stern-Gerlach experiment (20 points)
Consider the following experiment on a single electron. Suppose it has a wave function of the product form $\psi_{s}(\boldsymbol{x})=\phi_{s} \chi(\boldsymbol{x})$, and we focus only on the spinor. The initial spinor is $\phi=(1,0)$.
(a) A Stern-Gerlach experiment in the y-direction (or σ_{2}-measurement) is carried out, then a Stern-Gerlach experiment in the z-direction (or σ_{3}-measurement). Both measurements taken together have four possible outcomes: up-up, up-down, down-up, down-down. Find the probabilities of the four outcomes.
(b) As in (a), but now the z-experiment comes first and the y-experiment afterwards.

Please turn over.

Exercise 29: Lie algebras of $S O(3)$ and $S U(2)$ (30 points. Level: difficult)
A Lie group G, named after Sophus Lie (1842-1899), is a group that is also a manifold (a curved surface) such that the group multiplication and inversion are smooth mappings. Examples of Lie groups include $G L(n), S O(n), U(n), S U(n)$. The elements infinitesimally close to 1 in G form the Lie algebra g of G; more precisely, g is the tangent space of 1 , which is here the set

$$
\left\{\left.\frac{d A}{d t}(t=0) \right\rvert\, A:(-1,1) \rightarrow G \text { smooth, } A(0)=1\right\}
$$

(a) Determine the Lie algebras $s o(3)$ and $s u(2)$ as subspaces of the space of all real 3×3 (complex 2×2) matrices.
(b) The exponential mapping exp : $g \rightarrow G$ can be heuristically understood as follows: For $X \in g$, a corresponding group element infinitesimally close to 1 can be written as $1+X / n$ with n a large natural number (so $1 / n$ serves as an infinitesimal $d t$). Hence, roughly speaking, $(1+X / n) \in G$, hence $(1+X / n)^{n} \in G$; take the limit $n \rightarrow \infty$ to obtain $\exp (X)=: e^{X}$. Verify that the matrix exponential (defined by the exponential series) actually maps so(3) to $S O(3)$ and $s u(2)$ to $S U(2)$. (Hint: diagonalize $X \in g$.)
(c) We now consider the question what the group multiplication of e^{X} and e^{Y} looks like for $X, Y \in g$. We know that the solution Z of $e^{Z}=e^{X} e^{Y}$ is $Z=X+Y$ if X and Y commute, but not in general. A version of the Baker-Campbell-Hausdorff formula says that

$$
\text { the solution of } e^{Z}=e^{-t X} e^{-t Y} e^{t(X+Y)} \text { is } Z=\frac{1}{2} t^{2}[X, Y]+\mathcal{O}\left(t^{3}\right)
$$

as $t \rightarrow 0$, with $[X, Y]=X Y-Y X$ the commutator or Lie bracket. The Lie bracket is an operation on g that encodes how the group multiplication deviates from addition in g. Thus, one defines a Lie algebra in general as a vector space together with a bracket $[\cdot, \cdot]: g \times g \rightarrow g$ that is anti-symmetric, bilinear, and satisfies the Jacobi identity

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

Verify that $s o(3)$ and $s u(2)$ (with commutators as Lie brackets) are isomorphic Lie algebras. (Hint: The Pauli matrices have something to do with rotations about the x-, y-, and z-axis.)

Hand in: by Tuesday December 5, 2023, 8:15am

Reading assignment due Thursday December 7, 2023: A. Einstein, Reply to Criticisms, pages 665-688 in P. Schilpp (editor): Albert Einstein, Philosopher-Scientist (1949). Read pages 665-672 and the first quarter of 673 .

