Foundations of Quantum Mechanics: Assignment 5

Exercise 18: Essay question. (20 points)
Describe what the Heisenberg uncertainty relation asserts.

Exercise 19: Pauli matrices (30 points)
The three Pauli matrices are

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) For each of σ_{1} and σ_{2}, find an orthonormal basis of eigenvectors in \mathbb{C}^{2}.
(b) Show that for every unit vector $\boldsymbol{n} \in \mathbb{R}^{3}$, the Pauli matrix in direction $\boldsymbol{n}, \sigma_{\boldsymbol{n}}:=\boldsymbol{n} \cdot \boldsymbol{\sigma}=$ $n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3}$, has eigenvalues ± 1. (Hint: compute det and trace.)
(c) Show that every self-adjoint complex 2×2 matrix A is of the form $A=c I+\boldsymbol{u} \cdot \boldsymbol{\sigma}$ with $c \in \mathbb{R}$ and $\boldsymbol{u} \in \mathbb{R}^{3}$.

Exercise 20: Spectral theorem (20 points)
In this problem we use without proof the following generalization of the spectral theorem (formulated here in finite dimension): If the self-adjoint $d \times d$ matrices A and B commute, then they can be simultaneously unitarily diagonalized, i.e., there is an orthonormal basis $\left\{\phi_{1}, \ldots, \phi_{d}\right\}$ such that each ϕ_{j} is an eigenvector of A and an eigenvector of B.

Show that a $d \times d$ matrix C can be unitarily diagonalized iff C commutes with C^{\dagger}. Such a matrix is called "normal." (Hint: write $C=A+i B$.)

Exercise 21: Potential step (30 points)
Consider a potential step $V(x)=V_{0} 1_{0 \leq x}$ in 1 d with $V_{0}>0$. We want to compute the reflection and transmission probabilities as a function of the incoming momentum $\hbar k_{0}$, assuming that $E:=$ $\hbar^{2} k_{0}^{2} / 2 m>V_{0}$. A recipe for that is to consider a plane wave $e^{i k_{0} x}$ coming from $x=-\infty$ and see how much gets reflected and transmitted by constructing an eigenfunction ψ of $H, H \psi=E \psi$, from the ansatz

$$
\psi(x)= \begin{cases}A e^{i k_{0} x}+B e^{-i k_{0} x} & \text { for } x<0 \tag{2}\\ C e^{i K_{0} x} & \text { for } x>0\end{cases}
$$

with complex coefficients A, B, C, representing the incoming wave $e^{i k_{0} x}$, the reflected wave $e^{-i k_{0} x}$, and the transmitted wave $e^{i K_{0} x}$. Regarding V as a limit of continuous functions leads to the further requirement that ψ be continuous and continuously differentiable at 0 .
(a) Determine K_{0} from $H \psi=E \psi$.
(b) Determine B and C from A.
(c) The recipe says that the three waves are associated with probability currents $j_{\text {in }}=\hbar k_{0}|A|^{2} / m$, $j_{R}=\hbar k_{0}|B|^{2} / m$, and $j_{T}=\hbar K_{0}|C|^{2} / m$; and that the reflection probability is $P_{R}=j_{R} / j_{\text {in }}$, while the transmission probability is $P_{T}=j_{T} / j_{\text {in }}$. Compute P_{R} and P_{T}.
(d) To justify the recipe, consider a "plane wave packet" $\psi(x)=\phi(x) e^{i k_{0} x}$ with a (non-Gaussian) envelope profile $\phi(x)$ that is nearly constant over a region of length L much larger than the wave length $2 \pi / k_{0}$ and then drops to 0 over a length much smaller than L but still much larger than the wave length. Let us take for granted that under the free Schrödinger evolution the envelope function ϕ will approximately maintain its shape (in particular, its length) for a long time and simply move at speed $\hbar k_{0} / m$. Suppose the packet hits the step at $t=0$; forget about what happens at the edges of the packet and focus on the bulk. A reflected plane wave packet and a transmitted one are generated; at time $\tau>0$, the incoming plane wave packet is used up, and the two outgoing packets end. During $0<t<\tau$, the region around 0 is well approximated by (2); after τ, the outgoing packets keep moving away from the origin. Determine τ and the lengths L_{R} and L_{T} of the reflected and transmitted packets ψ_{R} and ψ_{T}.
(e) Determine $P_{R}=\left\|\psi_{R}\right\|^{2}$ and $P_{T}=\left\|\psi_{T}\right\|^{2}$ and verify that they agree with part (c).
(f) Draw a space-time diagram of the Bohmian trajectories in the bulk (that is, ignoring any edge effects).

Hand in: by Tuesday, November 21, 2023, 8:15am

Reading assignment due Thursday November 23, 2023: Section II of T. Norsen: The Pilot-Wave Perspective on Quantum Scattering and Tunneling. American Journal of Physics 81: 258 (2013)

