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Problem 41
Let Γj be the irreps of SU(2) (or of SO(3)) as constructed in the lecture.

a) Prove the following formula for the characters

χj(α) =
sin ((2j + 1)α/2)

sin(α/2)
.

b) Consider the product representation Γj ⊗ Γk with j ≥ k. Show that every irrep Γℓ

with ℓ = j − k, . . . , j + k appears exactly once in the decomposition of Γj ⊗Γk, and
that all other irreps are absent.

Problem 42
Let Γ be an irrep of SU(2) on C

n. Show that there exists a T ∈ GL(n,C) with T 2 ∈ {±1}
s.t.

Γ(g) = TΓ(g)T−1 ∀ g ∈ SU(2).

In which cases do we have T 2 = 1?

Hint: First find T for the defining representation. Observe that T ∈ SU(2) and then
investigate Γ(T ).

Problem 43
Let G be a Lie group with Lie algebra g, and let ad be the adjoint representation of g,
i.e. adX(Y ) = [X, Y ]. The map

K : g× g → R

(X, Y ) 7→ K(X, Y ) = tr(adX ◦ adY )

is called Killing-Form. Show:

a) K is bilinear and symmetric.

b) K

Adg(X),Adg(Y )

�
= K(X, Y ) ∀X, Y ∈ g and ∀ g ∈ G.

Remark: For semi-simple Lie groups (which we haven’t defined, but the classical groups
SU(n) and SO(n) are examples) K is positive definite, i.e. it defines a scalar product.

Let G now be such that K is positive definite. We choose an orthonormal basis {Xj}
with respect to K, i.e. K(Xj, Xk) = δjk, and define C2 ∈ E(g) by

C2 =
X

j

XjXj .

Show:

c) C2 is independent of the choice of basis.

d) C2 is a Casimir operator (the so-called quadratic Casimir operator), i.e.

Adg(C2) = C2 ∀ g ∈ G .


