Analysis I / Mathematik für Physiker I

Prof. Dr. P. Pickl, Umut Özcan

Blatt 4

Aufgabe 1: (2 Punkte) Zeigen Sie, dass folgende Aussagen äquivalent zum archimedischen Axiom sind. Dabei ist K als angeordnerter Körper zu verstehen, K^+ die Menge der positiven Elemente aus K.

- (a) Für zwei beliebige Elemente $a, b \in K^+$ gibt es eine natürliche Zahl n, so dass na > b.
- (b) Die Menge $\mathbb{N} \subset K$ ist unbeschränkt. (Als Einselement gemäß der Axiome von Peano ist hier das neutrale Element der Multiplikation aus K zu wählen und das Nachfolgegesetz durch n' = n + 1 definiert.)

Aufgabe 2: (2 Punkte) Überprüfen Sie, ob die folgenden Relationen Äquivalenzrelationen auf \mathbb{N} sind und beweisen Sie Ihre Aussage

- (a) $x \sim_a y :\Leftrightarrow x^2 y^2$ ist Vielfaches von 3 (d.h. es gibt ein $z \in \mathbb{Z}$ mit $x^2 y^2 = 3z$).
- (b) $x \sim_b y :\Leftrightarrow x^2 3y + 3x xy$ ist Vielfaches von 8.
- (c) $x \sim_c y$ genau dann, wenn x und y in Binärcode geschrieben die selbe Quersumme haben.
- (d) $x \sim_d y$ genau dann, wenn x + y keine Primzahl ist.

Aufgabe 3: (2 Punkte) Zeigen Sie direkt mit Hilfe der Definition, dass die Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ gegeben durch $a_n=\frac{\sqrt{n}-1}{\sqrt{n}+1}$ konvergiert.

Aufgabe 4: (2 Punkte) Sei K ein archimedisch angeordneter Körper, $(a_n)_{n\in\mathbb{N}}\subset K$ eine konvergente Folge mit $\lim_{n\to\infty}a_n=a,\ (b_n)_{n\in\mathbb{N}}\subset K$ eine beschränkte Folge. Zeigen Sie

- (a) Falls a = 0, so ist auch $\lim_{n \to \infty} a_n b_n = 0$.
- (b) Falls $a \neq 0$ so eistiert der Grenzwert $\lim_{n \to \infty} a_n b_n$ im allgemeinen nicht.

Bitte geben Sie das Übungsblatt jeweils zu zweit oder zu dritt bei Ihrem Übungsleiter bis spätestens 15.11.2023 um 10:15 ab. Denken Sie daran, von allen zwei bzw. drei Personen

die Namen auf dem Blatt anzugeben. Eine elektronische Abgabe per Upload über URM wird bevorzugt.