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Chapter 1

Inequalities

1.1 Basic Inequalities without a specific name

e £ € R = 22 >0 with equality iff z = 0.

e a,b € R = a? + b? > 2ab with equality iff @ = b.

1.2 HM-GM-AM-QM Inequality’

Let x1,...,2, > 0. Then

n T+ ...+ x, xi+ ...z

U<+ 1
AR

Equality holds in each inequality iff z; = ... = x,,.

1.3 Weighted GM-AM Inequality

Let z1,...,2, >0 and 04,...,0,, > 0 such that 6y +...+ 6, = 1. Then
mfl-..nwfl"§91x1+...+9nxn.

Equality holds iff z; = ... = x,.

1.4 Jensen’s inequality

Let f: [a,b] — R be convex, 1, ...,2, € [a,b] and a1,...,a, > 0 such that oy +...,a, = 1. Then

f <Zai!ﬂi) < Zaif(xi)'
i=1 i=1

The inequality is reversed, if f is concave. The inequality holds for integrals instead of sums as well.

I Harmonic-geometric-arithmetic-quadratic mean inequality
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1.5 Cauchy-Schwarz inequality

Let w and v be vectors of an inner product space. Then

[, 0)|* = (u,0) - (v, u) < (u,u) - (v,0).
Equality holds iff © and v are linearly dependent.
In particular: Let (z1,...,2,), (Y1,-..,yn) € C". Then

" " /2 , 1/2
> lwiyil < (Z |~”Ci|2> (Z |in2> :
i=1

i=1 i=1

Equality holds iff there exists a A € C such that x; = Ay; foralli =1,... n.
This is a special case of Holder’s inequality.

1.6 Holder’s inequality

Let 1 < p,q < oo such that % + % =1and (21,...,2Zn), (Y1, -,Yn) € C". Then
n n Up s n 1/q
Slant< (o) ()
i=1 i=1 i=1
Here, p = oo means that the sum should be replaced by max(|x1],...,|z,|). Equality holds iff there

exists a A € C such that x; = Ay; for all e = 1,...,n. The inequality holds for integrals as well.

1.7 Young’s inequality

Let a7b,p,q>0with%+%:1. Then

aP  b?
— + — > ab.
p q

Equality holds iff a? = 4.

1.8 Minkowski’s inequality

Let x1,. .., Zny Y1y s Yn,M1,..., My > 0 and p > 1. Then

n 1/p n 1/p n p
(Z mi(x; +yi)p> < <Z mﬂ‘f) + (Z miyzp> :
i=1 i=1 i=1

Equality holds iff there exists a A € C such that x; = Ay; foralli =1,... n.

1.9 Chebyshev’s inequality?

Leta; > ... >a, and by > ... > b,. Then

niaibi > (i ai) (i bi) >n <i aibn+1—i> .
i=1 i=1 i=1 i=1

Equality holds on each side iff a; = ... =a, or by = ... =1b,. The inequality holds for integrals as well.

2Also called: Chebyshev’s sum inequality



1.10 Nesbitt’s inequality

Let a,b,¢ > 0. Then
a b c

b+c+c+a+a+b

3
> —.
-2



Chapter 2

Combinatorics

2.1 Bijections

Two sets have the same number of elements, iff there exists a bijection between them.

2.2 The Pigeonhole Principle!

If n items are distributed on m boxes, with n > m, then at least one box contains more than one element.

Generalization:
If n items are distributed on m boxes, with n > km, then at least one box contains k + 1 elements.

2.3 Basic cardinalities

The number of permutations of a set of cardinality n is n!.

2.4 Inclusion-exclusion principle

This is also known as Sieve-formula. For finite sets Aq,..., A,, it holds that
Ual= 14— > JAndl+ > JAnAnAl—+ ()" An--n A
i=1 i=1 1<i<j<n 1<i<j<k<n

1 Also called: The Box Principle



Chapter 3

Number Theory

3.1 Bézout’s identity’
For a,b € Z \ {0} there are x,y € Z, such that ax + by = ged(a, b).

Corollary: For two non-zero, coprime integers a, b, there are integers z,y such that ax + by = 1.

3.2 Wilson’s theorem

Let 1 < p € N. Then p is prime iff (p — 1)! = —1 (mod p).

3.3 Fermat’s little theorem

Let p be a prime number and a € Z. Then

a’ =a (mod p).

3.4 Euler’s theorem?

Euler’s totient function is given by

@(n):#{m€N|m§n/\gcd(m,n)=1}=n<1—pll)...(1—plk>,

where p1,...,pr are the distintct prime numbers dividing n. Let a and n be coprime positive integers.
Then
a?™ =1 (mod n).

3.5 Chinese remainder theorem

Let nq,...,ng be pairwise coprime positive integers and N := nj ---ng. Then

Z, ~7 Z
VN7 =Tz X X 2

LAlso called: Bézout’s lemma
2Also called: Fermat-Euler theorem



3.6 Euclid’s formula for all Pythagorean triples

2

All pairwise coprime triples of integers satisfying 2 + y2 = 22 are given by

2 2 |
)

x=|u? —v%, y=2uv, z=u®+v? with ged(u,v) =1, u#v (mod 2).

3.7 Finite Group of Units of a field

Let K be a field and S a finite subgroup of K*. Then S is cyclic.

3.8 Fermat’s theorem on sums of two squares

Let p be an odd prime number. Then there exist a,b € N such that p = a® + b? iff p=1 (mod 4).

3.9 Sophie Germain Identity

at + 4b* = (a® + 2ab + 2b%)(a® — 2ab + 2b?).

3.10 Other useful facts

e a"—b"=(a—b)(a"t+a" "2+ - +ab? 2+ b1
=a—bla"=b"ifnevena+b|a”—0";ifnodda+b|a”+0d"

e Let QS(n) denote the sum of the digits of n. Then QS(n) =n mod 9 and QS(n) =n mod 3.



Chapter 4

Polynomials

4.1 Fundamental theorem of algebra

Every non-constant univariate polynomial over C has a root in C.

4.2 Identity theorem for polynomials

Let K be a field and f € K[t] be a polynomial of degree n with n + 1 zeroes. Then f = 0.

Corollary: If two polynomials f, g € K|[t] of degree n coincide in n + 1 points, they are equal.

4.3 Interpolation

Let n be a natural number and ag, ... ay, by, . . . b, fix complex numbers, with the a; being all distinct.
Then there is a unique polynomial P of degree < n such that for all 0 <k <n

P(ak) = bk.
If all (ag,by) are rational or real, the coefficients of P are rational or real, respectively.

The polynomial P can be explicitly constructed as
P(z) = by Li(x),
k=0

where the L are the Lagrange-Polynomials

Lk(l‘):H T — a;

A — a;
itk k i

which satisfy Ly (a;) = k-

4.4 Luca’s theorem

The zeros of the derivative P’(z) of a polynomial P € C[z] lie in the convex hull of the zeros of P(z).

7



4.5 Reciprocal polynomials

We call a polynomial f = a,z" + ...+ a1x + ag # 0 reciprocal, if a; = a,_; for i =0,...,n.
A reciprocal polynomial f of degree 2n can be written in the form f = a"g (x—l— %), where g is a
polynomial of degree n.

4.6 Fundamental theorem of symmetric polynomials

Let R be a commutative unital ring. For every symmetric polynomial f € R[zq,...,x,] exists exactly
one polynomial g € R[y1,...,Yn], such that
flxe,. .. zn) =gler(xr, oo xn)y oo yen(T1, ..y Tp)).

Here, e, denotes the k-th elementary symmetric polynomial

ep(T1,...Tpn) = Z Ty T

4.7 Vieta

Let P(x) = apz™+...a12+ag with a, # 0. Let aq, ... a, be the roots of P (counted with multiplicity).
Then

ep(ar, ..., an) = (_l)kan—_k7 for 1 <k <n.
Qn

4.8 FEisenstein

Let P(x) = apa™ + -+ 4+ ag € Z[z]. If there is a prime number p such that p fa,, plag,...a,—1 and
p? fag, P(z) is irreducible over Z[z].



Chapter 5

Linear Algebra and Matrices

5.1 The Adjugate

Let R be a commutative unital ring and A € Mat, (R). Then
AA* = det(A)1,,.

Corollary:
A invertible < det(A) invertible.

5.2 Rank-1 Matrices

A matrix A € Mat(m x n, K) has rank 1 if and only if it can be written as A = vw?® for vectors v € K™
and w € K™.

5.3 Cyclicity of the trace

The trace is cyclic, i.e. tr(AB) = tr(BA) for two square matrices A and B.

5.4 Spectral theorem

Let K € {R,C} and A € Mat, K be a normal matrix with eigenvalues in K. Then A is unitary
diagonalisable, i.e. there is a unitary matrix U € Mat, K such that U* AU is diagonal.

Corollary: A symmetric matrix A € Mat, R is orthogonally diagonalisable.

5.5 Cayley-Hamilton theorem

Any n x n matrix A satisfies its characteristic equation, which means that if P4(\) = det(\,, — A), then
P4(A) = 0. Equivalently, the minimal polynomial of A divides the characteristic polynomial of A.

9



5.6 Perron-Frobenius

Any square matrix with positive entries has a unique eigenvector with positive entries (up to mult. by
a positive scalar), and the corresponding eigenvalue has multiplicity one and is strictly greater than the
absolute value of any other eigenvalue.



Chapter 6

Calculus

6.1 Weierstrass extreme value theorem

A continuous function on a compact set attains its maximum and minimum.

6.2 Intermediate value theorem

Let f: [a,b] — R be a continuous function and min(f(a), f(b)) < ¢ < max(f(a), f(b)).
Then there is a point £ € (a,b) such that f(§) = c.

Equivalently:
Let f: [a,b] — R be a continuous function and f(a)f(b) < 0. Then f has a zero in (a, b).

6.3 Mean value theorem

Let f,g: [a,b] — R be continuous and differentiable on (a,b). Then there is a point £ € (a,b) such that

(f(b) = f(a)g'(€) = (g(b) — g(a)) f'(£).
Choosing g(z) = x, we obtain the Lagrange theorem that there is a point £ € (a, b) such that

6.4 Mean value theorem for integrals

Let f: [a,b] — R be continuous. Then there existst a £ € (a,b) such that

b
(b—a)f(€) = / f(z)da.

6.5 Tangent half-angle substitution

The substitution ¢ := tan (%) can be used to solve several integrals. In particular

42
[ romincnie= [ (2 528) 2n

11




Chapter 7

Functional equations

Functional equations are about finding functions satisfying certain equations. Often it is useful to plug
in values and play around. If there are some special assumptions on the functions (e.g. continuity or
differentiability) it probably is helpful to use these properties.

7.1 Cauchy’s functional equation

Which functions f : R — R satisfy
fl@+y) = flx)+ f(y)?

If we assume that f should be continuous in at least one point, the solutions to this functional equation
are given by f(x) = cx, where ¢ € R. If we do not assume continuity, there are many solutions (Putnam
and Beyond, Chapter 3.4.1).

12



Chapter 8

Algebra

8.1 Lagrange theorem

Let G be a group and H a subgroup of G. Then
G| = |G/H]|-|H|.

In a finite group G thus |H|, |G/H| and the order of any element g € G divide |G|. If |G| is prime, the
group G is cyclic and only has the subgroups 1 and G.

8.2 Subgroups of additive real numbers

A nontrivial subgroup of the additive group of real numbers is either cyclic or it is dense in the set of
real numbers. (see Putnam and beyond, Section 2.4.3)

8.3 Sylow’s theorems

Let p be prime. A finite group of order p* for some k > 1 is called p-group. Let G be a finite group and
p a prime divisor of |G|. Write |G| = p*m for k,m > 1 with p fm. Every subgroup of G of order p” is
called Sylow p-subgroup of G. The theorems state

(i) There exists a Sylow p-subgroup of G.
(ii) Every p-subgroup of G is contained in a Sylow p-subgroup of G.
(iii) All Sylow p-subgroups are conjugate to each other.

(iv) The number of Sylow p-subgroups of G is =1 mod p and a divisor of m.

It follows as a corollary, that G has an element of order p.

8.4 Symmetric group

The group S, of all permutations of {1,...,n} is called the symmetric group of degree n. Its order is
|Sn| = n!. Every permutation is a product of disjoint cycles. The group S, is generated by transpositions.

13



Cayley theorem Every finite group is isomorphic to a subgroup of some .S,,.

8.5 Jacobson’s theorem.

If R is a ring and for every 2 € R there exists an integer n(z) > 1 such that 2™(*) = 2, then the ring is
commutative.



Chapter 9

Sequences and Series

9.1 Binomial series

Let a, z € C such that |z| < 1 or o € N. Then:

(e =1t ars W0 00D 0 a0 oA,

9.2 Generating function'

The generating function of a given sequence (a,,) is

f(z):= Zanx".
n=0

Finding an explicit formula for a recursively given sequence can often be reduced to finding and solving
functional equations of the corresponding generating function.

To avoid issues like certain manipulations being prohibited by the rules of calculus, e.g. caring about
convergence, f will at first glance not be seen as a function. Instead, f is seen as a formal power series.
However, it is advisable to try certain manipulations known from calculus. Many of those do still work,
as the formal power series form a complete local ring and as the formal derivation works alike for formal
power series. Caring about the rules of calculus can often be done retroactively, if necessary.

9.3 Exponential generating function

The exponential generating function of a given sequence (ay,) is

f(z):= Z an%.
n=0 :

Finding an explicit formula for a recursively given sequence can sometimes be reduced to finding and
solving functional equations of the corresponding exponential generating function.

In doing so, the theory of exponential generating functions can be applied similar to the theory of
generating functions.

1Also called: Ordinary generating function
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Chapter 10

Geometry

10.1 Triangle inequality
Let a,b,c > 0. Then the following statements are equivalent:

(a) a,b,c are the sides of a non-degenerate triangle.
(b) a+ b > c and all permutations of this inequality also hold.

(¢) There are x,y,z > 0suchthata =y+z, b=x+z, c=x+y (Also called geometric substitution)

10.2 Comparing sides and angles of a triangle

Consider a triangle with sides a, b, ¢ and angles «, 3,~, respectively. Then
a>bs a> 0.

All permutations of this equivalence hold as well.

10.3 Inscribed angle theorem

An angle inscribed in a circle is half of the central angle subtending the same arc.

Corollary: Let A, B be points in the plane and 0 < a < w. The set of points P such that ZAPB = «
is an arc of a circle, bounded by A and B.

10.4 Ptolemy’s theorem

For any four points A, B, C, D in the plane, the following inequality holds:
AC-BD < AB-CD+ AD - BC.

Equality holds iff ABCD is a cyclic quadrilateral’ or A, B,C, D are collinear with exactly one of B, D
between A, C.

1 Also called: Chordal quadrilateral
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10.5 Parallelogram inequality

For any four points A, B,C, D € R™ we have
AB? + BC? + CD? + DA* > AC? + BD?

with equality? iff ABCD is a parallelogram with diagonals AC' and BD.

10.6 Heron’s formula

Consider a triangle with sides a, b, c. Then the area of the triangle is given by

V(s —a)(s —b)(s —c).

denotes the semiperimeter of the triangle.

Here, s := %Hc

10.7 Law of sines

Consider a triangle with sides a, b, ¢, angles «, 3, 7, respectively, and circumcircle radius R. Then

a b c
Sn(a)  sn(@) _sn(y) 2%

10.8 Law of cosines
Consider a triangle with sides a, b, c and angles «, 3,7y, respectively. Then
= a® + b* — 2abcos(v).
10.9 Weitzenbock’s inequality
Consider a triangle with sides a, b, ¢ and area A. Then
a® + b2+ 24\/§-A.
10.10 Erdos-Mordell inequality

Consider the triangle ABC. Let P be a point inside the triangle. Let PF,, PF, and PF, be the
perpendiculars from P to each side of the triangle. Then

PA+ PB+ PC > 2(PF, + PF, + PF.).

2If ABCD is a parallelogram, this equation is called Parallelogram identity



