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1 Introduction

Classical Hurwitz theory is deeply rooted in mathematical history. It first emerged as an enu-
merative problem that goes back to Hurwitz: count the number of branched covers of a fixed
target curve that exhibit a certain ramification behaviour. This number is called a Hurwitz
number. Since then, Hurwitz theory has provided a variety of connections between different ar-
eas of mathematics such as algebraic geometry, representation theory and mathematical physics.

A modern twist. Spin Hurwitz numbers were introduced by Eskin-Okounkov-Pandharipande in
2008 for certain computations in the moduli space of differentials on a Riemann surface [Gun16].
Similarly to Hurwitz numbers they are defined as a weighted count of branched coverings of a
smooth algebraic curve D with fixed degree and branching profile. In addition, they include
information about the lift of a theta characteristic of fixed parity on the base curve D. A seem-
ingly small change that makes the problem all the more exciting, a true gem in combinatorics.

Eventually an active and interdisciplinary field of research emerged, spin Hurwitz theory with
latest results published in 2021 [GKL21]. While the computation of spin Hurwitz numbers was
approached from very different angles, e.g. via integrable systems or representation theory of
the Sergeev group [EOP08], many questions remain open, in particular a tropical approach is
still missing.

In tropical geometry we extract combinatorial data from algebraic objects via a degeneration
process and present it in a simplified form: tropical curves for example are metric graphs obtained
as result of a degeneration of algebraic curves. Any such process is called tropicalization. Ideally,
we wish to define for each object in algebraic geometry a (combinatorial) tropical counterpart in
such a way, that we can address enumerative problems on the tropical side first [Gat06], where
the picture is less cluttered. We then hope to obtain new insights by transferring results back
to the algebraic side:

Procedure 1.1. How to address algebraic problems

• State a problem in algebraic geometry.

• Tropicalize the objects involved by extracting relevant combinatorics and define an anal-
ogous problem on the tropical side.

• Solve it in the “tropical world” using methods from discrete mathematics.

• Transfer the solution back to the algebraic side.

The last step is often the most complicated one, it addresses the counterpart of tropicalization,
the question of realizability, i.e. can we find algebraic objects that tropicalize to the synthetically
defined tropical ones we considered?
The power of this approach lies beyond doubt. Promising results as well as new insights in
existing problems appear each year and give this young theory a boost in prominence. Tropical
Hurwitz theory for example, mainly developed by Cavalieri, Markwig and Johnson, allowed for
new insights in the piecewise polynomial structure of double Hurwitz numbers ([CJM10]) and
is essential for the concepts developed in this thesis.
The present work is dedicated to the development of tropical spin Hurwitz theory. Under the
slogan

Tropical geometry is the combinatorial shadow of algebraic geometry [MS15] .
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we define tropical spin Hurwitz numbers as result of an algebraic degeneration procedure. But
soon these tropical objects develop a life of their own. That is they have a natural place in the
tropical world as tropical covers with tropical theta characteristics on source and target curve.
The difficulty of tropicalizing theta characteristics has already been noted by Caporaso, Melo
and Pacini in [CMP20]: odd and even theta characteristics may tropicalize to the same object.
To compensate for this loss of information they introduce a sign function on a graph obtained
after contraction of a cycle. Our definition of parity of tropical spin Hurwitz covers admits an
interpretation in terms of their theory of tropical spin curves.

Tropical spin Hurwitz covers are interesting in their own right. As a new combinatorial tool to
produce spin Hurwitz numbers or to study their properties, but also as a way to demonstrate
the feasibility of tropical geometry to organize degenerations of theta characteristics in spite
of the difficulties mentioned above. More generally, tropical geometry provides a way to study
the moduli space of spin covers and its intersection theory by means of combinatorics. In light
of the success story of tropical geometry we also believe that these will help to deepen the
understanding of classical spin Hurwitz numbers and facilitate the study of their combinatorial
properties: the philosophy of this approach is justified by the two correspondence theorems
established in section 5.1.

Classical spin
Hurwitz numbers

Tropical spin
Hurwitz numbersCorrespondence

Theorem

Formulas ∶

H
(h,+)

(3)k
= 32h−2 ((−1)k2h+k−1 + 1)

alg. degeneration

TH(h,+)
(3)k

= 32h−2 ((−1)k2h+k−1 + 1)

Cutting and
gluing

Figure 1: Diagram illustrating the relationship between tropical and algebraic spin Hurwitz num-
bers. Their equality can be established either directly via a correspondence theorem
(top arrow) or indirectly via computation in the tropical and in the algebraic world
(bottom part of the triangle): Formulas for classical spin Hurwitz numbers of degree
3 on the left ([Lee13]) and for the corresponding tropical ones on the right (subsection
5.1.2).

In section 4.4 we state a recursion formula obtained by Lee in 2012 via spin degeneration, first for
degree 3 in [Lee13] and then together with Parker for arbitrary spin Hurwitz numbers in [LP13].
From a tropical perspective it is natural to iterate their degeneration procedure to get tropical
covers as maps between the dual graphs of source and target curve. We need to endow these
with an additional structure that encodes the parity of the “dual” covering maps and define
tropical spin Hurwitz numbers, just like in the “algebraic world”, as a signed sum of tropical spin
Hurwitz covers. These are tropical covers together with an admissible parity function- a notion
we develop as by-product of the algebraic degeneration procedure- on source and target curve
that are in some sense compatible. We distinguish two cases: the case where the target curve is
even and the case where the target curve is odd. The first allows us to use already established
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theory, the theory of tropical Hurwitz covers, since working with maximally degenerate base
curves is still possible. For the second we consider almost maximally degenerate base curves, i.e.
a curve that is maximally degenerate except for a 1-valent vertex of genus 1. Next, we define
the parity and multiplicity of a tropical spin Hurwitz cover that will determine its weight and
introduce tropical spin Hurwitz numbers as weighted count of tropical spin Hurwitz covers. Our
main results are two correspondence theorems stating the equality of the tropical spin Hurwitz
number with the classical one, theorem 5.37 for even spin Hurwitz numbers and theorem 5.41
for odd ones.
Concrete computational results can be found in subsection 5.1.1-5.1.4, which leads to elementary
proofs of Lee and Parkers results for degree 3 and 4 in [Lee13] and [LP13] (see figure 1). It also
provides an indirect proof of the correspondence theorems that relies on purely combinatorial
methods. For this purpose we need a more general version of tropical covers of elliptic curves
than is considered in [BM14]. We develop this in section 3.2.
We obtain new numbers for covers of the tropical line of arbitrary degree with at most 4 branch
points, proposition 5.36, that carry over to the classical world via our correspondence. These
numbers were not computed by Lee and Parker in [LP13] and, as far as the author knows, are
also new to the classical world. Restricting to the special cases considered in subsection 5.1.1-
5.1.4 has two advantages. An admissible parity function on the cover curve is unique and the
multiplicity coincides with the usual definition for tropical Hurwitz covers.

Organization of this thesis. Being a tropical geometer is little bit like living in two worlds, the
algebraic and the tropical one. It is only with a deep understanding of the first that we get to
unleash our full creativity in the second. Hence, this thesis is a journey through both worlds.
While section 2-4 mostly reviews existing results (apart from section 3 where we generalize some
of the results in [BM14]), section 5 contains the newly established results by this thesis. In
section 2 we start with a recall of everything algebraic (related to Hurwitz theory of course),
i.e. we collect definitions, tools and set up relevant notation. A strong base for future work
is tropical Hurwitz theory, a collection of the main results is given in section 3. Section 4 is a
good place to get acquainted with spin Hurwitz theory and section 5, finally, introduces tropical
spin Hurwitz numbers. After investigating some special cases in the tropical world (subsection
5.1.1-5.1.4), we conclude with the proof of our correspondence theorems in subsection 5.2.

2 Preliminaries

Building a solid foundation. In order to build a tropical counterpart of spin Hurwitz numbers
from a solid foundation, we recall and repeat the algebraic knowledge we will need moving
forward. Let us set up two intentions for this section:

1. Develop a working knowledge of algebraic objects.

2. Appeal to the geometric intuition of the reader.

Hurwitz theory lies at the intersection of various fields of mathematics including topology, dif-
ferential and algebraic geometry methods and definitions occur in more than just one flavour. In
fact, each area has its one way of putting things. It is useful at times to include these different
perspectives.
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2.1 Curves and Riemann surfaces

Curves lie at the heart of algebraic geometry. Intuitively, a curve is just the zero set of a
polynomial in two variables, i.e. C = {(x, y) ∈ C2 ∶ f(x, y) = 0} for f ∈ C[x, y]. Over the course
of time, however, it became clear that things get easier if one works over a compact space. Thus,
we prefer to deal with projective curves in P2, that is zero sets of homogeneous polynomials in
three variables. This is not too far of from the previous notion (on affine subset of P2 these
agree) and offers all the advantages of a compact space. But once people wanted to consider
deformations of curves, complications began to arise. It became obvious that clinging to the old
notion of a curve as vanishing locus of polynomial equations was the root of all difficulties. And
thus, curves were ripped out of their ambient space and were replaced by abstract objects:

Definition 2.1 (section 1.5. [CMP20]). A curve C is a reduced, projective variety of dimension
one, not necessarily connected, over C. A pointed curve is a pair (C,σ), where σ is an ordered
and finite set of smooth and distinct points of C.

So far definition 2.1 only describes the algebraic “way out”, a Riemann surface, on the other
hand, is the corresponding abstract object on the analytic side. Their relation is a beautiful
one, though we will only get a glimpse of it.
Curves and Riemann surfaces. For this paragraph we will implicitly assume each curve C to
be smooth. As mentioned before we are interested in the equivalent of a projective curve in
differential geometry, a Riemann Surface.

Definition 2.2 (Definition 3.0.4.[RC]). A Riemann Surface is a complex analytic manifold of
dimension 1.

There is a beautiful correspondence between compact Riemann Surfaces and smooth curves
(chapter 1.3 [GGD12]). It can be shown that after embedding an algebraic curve into projective
space there is a unique way to turn its image into a Riemann surface, i.e. there exists a unique
complex structure thereon. In fact, this construction defines a functor F between the categories
of compact Riemann surfaces (with holomorphic maps as morphisms) and smooth algebraic
curves (with birational morphisms as morphisms). Moreover, F induces a bijection from the set
of proper algebraic curves (taken up to isomorphism) to the set of compact Riemann surfaces
(taken up to isomorphism)(chapter 1.3 [GGD12]). This justifies that we will use both terms
interchangeably. It is worth pondering over this for a second: This connection allows us to view
objects and definitions from both fields from completely different perspectives.

Example 2.3 (Two perspective of P1). We can draw two different pictures of the projective
line.

∞

P(R)

The left was drawn by an algebraic geometer and reflects set theoretic interpretation of P1 as
lines through the origin in C2 (here only a real picture), the right one by differential geometer,
who thinks of P1 as the Riemann sphere obtained by gluing together two copies of C.
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The genus. From a topological point of view the genus g(C) arises as a (topological) invariant
that counts “the number of handles” on a compact surface (Theorem 2.4.3 [RC]), i.e. a compact
smooth orientable manifold of real dimension 2. Note, any curve C is in particular a real surface
and, hence, has a topological genus. From an algebraic perspective we can view the (geometric)
genus as counting the number of linearly independent holomorphic differentials on C, that is
g(C) = dimC(H

0(C,ωC)) as we will see later on. It is a non-trivial fact that geometric and
topological genus agree (if C is smooth). If C is reducible we can compute the genus of its
irreducible components instead: Let C ∶= ⋃k

i=1Ci its decomposition into irreducible components
then g(C) = 1 − k +∑k

i=1 g(Ci).

Example 2.4. The curve

C ∶= {(x ∶ y ∶ z) ∈ P2
∣ 0 = y2z − x(x − z)(x + z)}.

is an example of an elliptic curve. Since C is smooth and of genus 1, it is a Riemann surface
that topologically is a torus.

The canonical bundle. Recall, the cotangent bundle of a smooth manifold M is (as a set) the
disjoint union of the cotangent spaces T ∗p M :

T ∗M ∶= ⋃
p∈M
{p} × T ∗p M.

There is a canonical way to equip T ∗M with a holomorphic structure. Hence, the pair (π,T ∗M),
where the map π is just the projection to M , is a vector bundle of rank dimC(M). If M = C is
a smooth curve, (π,T ∗M) is a line bundle, i.e. a vector bundle of rank 1, and agrees with the
canonical bundle denoted by ωC (p.114 [Gat03]). Its space of global sections H0(C,ω) is the
space of holomorphic 1-forms/differentials on C.
The algebro-geometric analogue of this construction is the cotangent sheaf. Though we work
with projective curves, we content ourselves with a definition in the case of an affine variety X:
the module of differentials ΩX . Why? A “sheafification” of ΩX that generalizes to projective
varieties only shows that a global object ΩX exists (Remark 7.4.8.[Gat03]). Since it restricts to
the affine definition on affine open subsets, it is far more useful for practical computations.

Definition 2.5 (Definition 7.4.1. and Example 7.4.2. [Gat03]). Let X be an affine variety
with coordinate ring R = C[x1, ..., xn]/⟨f1, ..., fm⟩. We define the R-module ΩX , the module
of differentials, to be the free R-module generated by formal symbols {dr; r ∈ R}, modulo the
relations

1. d(r1 + r2) = dr1 + dr2 for r1, r2 ∈ R,

2. d(r1r2) = r2dr1 + r1dr2 for r1, r2 ∈ R

3. dc = 0 for c ∈ C.

In this case we have

ΩX = ⟨dx1, ..., dxn⟩R/⟨
n

∑
i=1

∂fj

∂xi
dxi, j = 1, ...,m⟩R and

T ∗PX ≅ ⟨dx1, ..., dxn⟩R/⟨
n

∑
i=1

∂fj(P )

∂xi
dxi⟩ for P ∈X.

The last two statements follow from the fact that R is generated by the equivalence classes
x̄i for i = 1, ..., n (in R) and by applying the rules of differentiation (1)-(3). Strictly speaking
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ΩX is not a sheaf. For the purpose of this thesis, however, we will pretend that it is and call
it the cotangent sheaf. This is justified by Proposition 7.4.11. ([Gat03]) that shows that the
generalization only glues these affine constructions together. Moreover, if X = C for a curve C
cotangent sheaf and canonical sheaf agree. Hence, we write ωC in this case.

Example 2.6. (21.2.7. in [Vak17]) Consider the affine curve

C̃ ∶= {(x, y) ∈ C2
∶ 0 = y2 − (x3 − x)}

given by restricting the curve from example 2.4 to the affine set {(x ∶ y ∶ z) ∈ P2∣z ≠ 0} by choice
of coordinates x

z and y
z . The cotangent sheaf of C̃ is given by

ωC̃ = ⟨dx, dy⟩R/⟨2ydy − (3x
2
− 1)dx⟩R, where R = C[x, y]/⟨y2 − (x3 − x)⟩.

We see 2ydy = (3x2 − 1)dx in ωC̃ and conclude that ωC̃ is locally, i.e on the set x ≠ 0 (y ≠ 0),

generated by dy (dx). Since both sets form an open cover of C̃ (i.e. C̃ ⊂ {x ≠ 0} ∪ {y ≠ 0}), the
vector spaces T ∗P C̃ for P ∈ C̃ are 1-dimensional. We conclude that ΩX is of rank 1, i.e. a line
bundle.

Nodal curves. Why should we care about curves with singularities? A lot of rather difficult
problems involve smooth curves of high genus, e.g. the computation of spin Hurwitz numbers.
Many times the following strategy has proven useful: Take a curve C of choice, deform until
it “breaks up” into simpler components of lower genus, that is until it becomes singular, and
analyze these components instead. Hopefully, new insight are easier to achieve and “carry over”
nicely to the original case. We will only work with the simplest singular curves, at worst nodal
ones.

Definition 2.7 (Definition 2.2.[Ong14]). A node is a singularity on the curve which is locally
complex-analytically isomorphic to a neighborhood of the origin in the zero locus {xy = 0} ⊂ C2

A nodal curve is a curve such that every one of its points is either smooth or a node.

C

Figure 2: A topological picture of a nodal curve.

Both the genus and the canonical bundle can be extended to nodal curves, where we talk about
the arithmetic genus and dualizing sheaf instead.
The arithmetic genus. Formally the arithmetic genus is defined as pa(C) ∶= 1−χ(OC) where OC

is structure sheaf on C, i.e. the sheaf of holomorphic functions (or regular function if you are an
algebraic geometer) on C, and χ its (algebraic not topological see [Gat03]) Euler characteristic
(section 2.1. [Ong14]). Intuitively, we can think of the arithmetic genus of a nodal curve as
the genus of the curve obtained after smoothing the nodes. This captures the feature that it
stays constant in families of curves with possibly singular fibres (see definition 2.9). If C has k
connected components denoted by Ci, we have g(C) = 1 − k +∑k

i=1 g(Ci).
The dualizing sheaf. The following example motivates why we need a different object than the
cotangent sheaf when working with nodal curves.
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Example 2.8. Consider C ∶= {(x, y) ∈ C2 ∶ 0 = yx}. We have

ωC = ⟨dx, dy⟩R/⟨ydx + xdy⟩R, where R = C[x, y]/⟨yx⟩.

For the same reasons as in example 2.6 the vector spaces T ∗PC are one dimensional if x ≠ 0 ≠ y.
At the node P = (0,0), however, the fibre of ωC over the origin is T ∗PC = ⟨dx, dy⟩R/⟨0dx+0dy⟩R,
a vector space of dimension 2.

We see, if C is a nodal curve the dimension of T ∗PC at the nodes might jump. This means ΩC is
not line bundle. Defining the alternative object, the dualizing sheaf, in full generality requires
a deeper dive into algebraic geometry. We content ourselves with a description in the case of a
nodal curve C with set of nodes N ∶= {p1, ..., pk} (see pg 32 in [Cav16]):
Let ν ∶ Cν → C be the normalization of C and {ri, si} = ν−1(pi). The dualizing sheaf ωC

associates to an open subset U of C meromorphic differentials η on ν−1(U) having at worst
simple poles at ri, si for nodes pi ∈ U such that the residues match, i.e. we have

Resri(η) +Ressi(η) = 0

for every pair ri, si.
If C is a connected curve of arithmetic genus g, then h0(C,ωC) ∶= dimC(H

0(C,ωC)) = g. We
make the notion of deforming a curve precise.

Definition 2.9 (adaptation of pg. 19 in [CMP20]). Let ∆ be a regular, connected curve with a
marked point, t0 ∈∆. A 1-parameter family of (pointed) nodal curves over ∆ is a flat morphism
π ∶ C → ∆ whose fibres are the (pointed) nodal curves Ct ∶= π

−1(t). We denote by C0 the fibre
over t0 and we will always assume that Ct is isomorphic to Ct′ for t ≠ t

′ and t, t′ ∈∆ ∖ {t0}. We
shall call Ct the “generic” and C0 the special fibre of the family.

Example 2.10 (see pg. 188 [RC]). Consider the family

π ∶ C ∶= {(x ∶ y ∶ z) ∈ P2
∶ xy − tz2 = 0}→∆

over a complex disk ∆ ⊂ C with parameter t shown in figure 2.10. The generic fibre is a smooth
curve isomorphic to P1. The special fibre is a nodal curve given by the union of coordinate axes.

t = 10 t = 1 t = 0

Figure 3: Real picture of the fibre of π over t = 0,1,10 in the z = 1 plane.

Maps between Riemann surfaces. In the category of compact Riemann surfaces the structure-
preserving maps are precisely the holomorphic maps. Note that compactness of both target and
base space together with holomorphicity are highly restrictive conditions, we expect them to
carry a lot of structure within.
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Definition 2.11. Let C and D be compact Riemann surfaces. We call a map f ∶ C → D
holomorphic if and only if for every point p ∈ C and every choice of charts ϕp around p and ϕf(p)
around f(p) the map F ∶= ϕf(p) ○ f ○ ϕp

−1 is a holomorphic map between open sets of C (figure
4). We call F the local expression for f .

In fact, by carefully choosing our charts we can always achieve that (if f is non-constant) F is
power function z ↦ zkp where the positive integer kp is uniquely determined. Here, carefully
choosing means that we need to impose a restriction on the choice of charts ϕp and ϕf(p): We
require that they are centred at p, f(p), i.e. ϕp(p) = 0 = ϕf(p)(f(p)) (see Theorem 4.2.1. [RC]).
In this case we call kp the ramification index of f at p.
Generically, i.e. except at finitely (since C is compact) many points, kp = 1. Points, where kp > 1
are called ramification points of f and their images f(p) ∈ D branch points. Except at branch
points, each q ∈ D has exactly d inverse images under f . This constant is called the degree of
f . Figure 5 shows a local image of f around a generic point (on the left) and a branch point
(on the right). The collection of ramification indices of preimages of branch points are called
ramification profile and form a partition of the degree of f .

Figure 4: Local structure of a map between two Riemann surfaces [RC].

Sheet 1

Sheet 2

f

Generic point Branch point

Figure 5: Real (local) picture of a degree 2 branched covering of P1 with ramification profiles
(2).

Line bundles and divisors. A divisor on a curve C is a formal linear combination of points on
C with integer coefficients. Let f ∶ C ↦ C a meromorphic function, i.e. f corresponds to a non
trivial element of the field of rational functions K(C) of C (Definition 3.3.3. [Gat03]). To f we
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associate a divisor

(f) ∶= ∑
P ∈C

ν(P )P,

where ν(P ) is the order of the lowest non trivial coefficient in the Laurent series of f . A point
P is a zero of f if ν(P ) > 0 and a pole if ν(P ) < 0. Such divisors are called principle and have
degree 0. Similarly, we can associate a divisor to a rational map g on C that is only locally
defined and thus to a global section s of an arbitrary line bundle L.

Definition 2.12. (13.1.2. [Vak17]) Given a global section s of a line bundle L of C, we can pick
an open cover Ui of C and local trivialization ϕ ∶ Ui → Ui ×C of L for every Ui. Then s can be
naturally identified with a functions g ∶ Ui → C and the corresponding divisor is (s) ∶= ∑

i
(gi).

We can think of (s) as the divisor of zeros and poles of (s). There is a correspondence between
the group of line bundles PicC with group structure induced by the usual tensor product and
the group of divisors on C denoted by DivC :

u ∶DivC → PicC ,D ↦ OC(D), where H0
(C,OC(D)) ∶= {f ≠ 0 meromorphic ∶ (f) +D ⩾ 0}.

The Abel-Jacobi map u assigns to any divisor the line bundle OC(D) whose global sections
consist of meromorphic functions on C whose zeroes and poles are controlled by D. Conversely,
it can be shown that every line bundle L admits a global section s and, thus, can be written in
the form L = OC(D) with D = (s). In this light we can find an equivalent construction on the
side of divisors for the space of global sections H0(C,L) of L.

Definition 2.13 ( and Theorem section 1.2. in [Bar14]). We denote by ∣D∣ the set of all effective
divisors which are linearly equivalent to D, the so called complete linear system of D. We have
an isomorphism

PH0
(C,OC(D)) ≅ ∣D∣, f ↦D + (f).

Definition 2.14. Let ωC be the cotangent bundle of C. The divisor KC associated to a global
section s of ωC by the above correspondence is called a canonical divisor. All canonical divisors
on a curve are linearly equivalent and, as it follows from the Riemann-Roch Theorem (theorem
2.17), have degree 2g − 2 (example 2.18) (Theorem section 1.3. in [Bar14]).

Example 2.15. Let C = P1. In order to compute (ωP1) we have to find a global section s of
ωP1 and determine (s). We use the identification of global sections of the cotangent bundle
with meromorphic differentials on C. Let U1 ∶= {(X ∶ Y ) X ≠ 0} and U2 ∶= {(X ∶ Y ) Y ≠ 0}
together with local coordinates x ∶= Y

X and y ∶= X
Y . On U1 (its identification with affine space

A1 to be more precise) we know that ΩC is locally generated by dx (definition 2.5). This is a
meromorphic differential without poles or zeroes (on A1). We have to figure out if we can extend
dx to infinity (i.e to X = 0). On U1 ∩U2 we can obtain its expression in y−coordinates by using
the transition function x ↦ 1

x . We get a meromorphic differential dx = −1
y2
dy on P1 with a pole

of order 2 at infinity. Hence, (ωP1) = −2(0 ∶ 1) and deg(ωP1) = −2.

The canonical embedding. The canonical divisor can be used to embed the a curve into projective
space.

Definition 2.16 (Definition 4 [Ser17]). Let C be a curve of genus g and ωC its cotangent bundle.
Let V ∶= H0(C,ωC) be the space of global sections of ωC or, equivalently, the vector space of
holomorphic differential forms on C. For each p ∈ C let Vp ∶= {s ∈ V ∣s(p) = 0} be the subvector
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space of V consisting of all holomorphic differentials vanishing at p. Let P(V )∗ denote the the
dual projective space of V . The map

ϕ ∶ C → P(V )∗, p↦ Vp

is called the canonical map. If C is not hyperelliptic then ϕ is an embedding and ϕ(C) is a curve
of degree 2g − 2 called the canonical model of C, or simply a canonical curve.

Since ∣KC ∣ is base-point-free, i.e. there is no point in C common to all divisors in ∣KC ∣, the
condition s(p) = 0 is non trivial. Hence, it defines a hyperplane or equivalently a point in the
dual space. The canonical embedding can be extended to effective divisors via

D =∑
i

nPi ↦ span{ϕ(P1), ..., ϕ(Pn)}.

This embedding gives us a nice way to visualize the canonical class of a curve:
Observe that a global section s ∈ V (i.e. a point) corresponds to a hyperplane Hs in the
dual space. By identifying C with its image ϕ(C) we see that the divisor (s) arises from
the intersection Hs ⋅ C. All canonical divisors are linearly equivalent, that is there exists a
meromorphic function f such that (s1) + (f) = (s2) for two canonical divisors (s1) and (s2).
Geometrically, we can interpret f as a transformation which moves the hyperplane Hs1 to Hs2

([Bar14]) (see figure 6).

Figure 6: Figure 1.2 in [Bar14]

Tools to compute h0(C,L). We are interested in the dimension of the space of global sections
of a line bundle. A powerful tool to address this is the Riemann-Roch theorem for line bundles
(alternatively with our identification, for divisors) on smooth curves.

Theorem 2.17. Let D be a divisor on a smooth genus g curve C and KC the canonical divisor.
The Riemann-Roch formula states

h0(C,D) − h0(KC −D) = deg(D) − g + 1.

Example 2.18. An easy consequence is deg(KC) = 2g − 2. Choosing D ∶=KC and D = 0 in the
above formula yields the result.

Aside from our interest in computing h0(C,D), the Riemann-Roch Theorem has an important
application to Hurwitz theory. It relates all discrete invariants we have associated to a map of
compact Riemann Surfaces.

Theorem 2.19. [(Riemann Hurwitz formula) [Theorem 2.2.2 [Ong14]]] Let f ∶ C → D be a non
constant holomorphic map between two smooth curves. Then

KC ≅ f
∗
(KD) +Rf ,

where ν(P ) is the vanishing order of f at p and Rf ∶= ∑p∈C(ν(P ) − 1)p the ramification divisor
of f . The numerical formula appears as a corollary:

2 − 2g(C) = d(2 − 2g(D)) + ∑
p∈C

νp − 1.
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For the moment we renounce to giving an example since countless applications of this formula
wait for us in the next chapters.

2.2 Hurwitz theory

The (real) starting point of our journey. The roots of Hurwitz theory date as far back as
1900, where Hurwitz published an enumerative problem, the computation of so-called Hurwitz
numbers. It soon emerged into a rich and beautiful theory that is concerned with the enumerative
study of holomorphic maps between Riemann surfaces.
As usual (in mathematics) we do not care about their concrete realization, but want to identify
objects that are “essentially the same” .

Definition 2.20 (Definition 6.1.1 [RC]). Two holomorphic maps of Riemann surfaces f ∶ C → D
and g ∶ C̃ → D are called isomorphic if there is an isomorphism of Riemann surfaces ϕ ∶ C → C̃
such that f = g ○ ϕ. An automorphism of f is an isomorphism ϕ ∶ C → C such that f = f ○ ϕ.
The group of automorphisms of f is denoted Aut(f).

The counting problem. Even if we fix the target curve, say D = P1, the number of isomorphism
classes of maps to D is infinite. This is why, in addition to fixing a curve D of genus h, we
introduce some additional geometric constraints. These make our count finite. Thus, fix

1. a collection of points q1, ..., qn ∈D , the prescribed branch points,

2. a positive integer d, the prescribed degree,

3. a collection λ1, ..., λn of partitions of d, the prescribed ramification profiles

and count the weighted number of (isomorphism classes of) maps f ∶ C → D, denoted by [f],
from a connected Riemann surface C, such that f is of degree d and displays the ramification
behaviour at points qi prescribed by the partitions λi. We say, f is a Hurwitz map or cover for
the discrete data (g, h, d, λ1, ..., λn).

Definition 2.21. The number defined above is called a Hurwitz number for the discrete data
(g, h, d, λ1, ..., λn) and denoted by H

g
d
Ð→h
(λ1, ..., λn). We have

H
g

d
Ð→h
(λ1, ..., λn) ∶=∑

[f]

1

∣Aut(f)∣

where the sum is over all isomorphism classes of Hurwitz covers. If we allow C to be disconnected,
we denote the corresponding Hurwitz number by H●

g
d
Ð→h
(λ1, ..., λn).

Remark 2.22. The notation H
g

d
Ð→h
(λ1, ..., λn) implicitly assumes that a Hurwitz number only

depends on the discrete data (g, h, d, λ1, ..., λn). But what about the choices we made, e.g. the
choice of a Riemann surface D or the choice of a configuration of points on D? Riemann’s
existence theorem (Theorem 6.2.2 [RC]) resolves these issues. He observes that a topological
cover of finite degree f0 ∶ C0 → D ∖ {q1, ..., qn} extends uniquely (up to isomorphisms) to a
holomorphic map of compact Riemann surfaces f ∶ C →D.

The existence problem. The most basic question, a priori, is: For which data does a such a
map exist? Surprisingly, it turns out to be a famous problem, known as the Hurwitz existence
problem. We already saw necessary condition in the previous section: the data (g, h, d, λ1, ..., λn)

has to satisfy the Riemann Hurwitz formula 2.19, i.e.

2 − 2g = d(2 − 2h) +
n

∑
i=1
(d − l(λi)),
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where we used that

∑
P ∈C
(ν(P ) − 1) = ∑

P̃ ∈D
(d − l(λP̃ )) and λP̃ denotes the ramifcation profile of f at P̃ .

However, it is far from being a sufficient condition as example 2.26 shows. The work of Mednykh
provides us with a complete solution of Hurwitz’s existence problem in terms of irreducible repre-
sentation of the symmetric group ([Med84]). However, his formula is only useful in very specific
cases since largely intractable sums make computation infeasible. Hence, finding practicable
sufficient and necessary conditions is still an open problem ([RC]).

Example 2.23. Let D = P1, d ∈ N, q1 = (0 ∶ 1),q2 = (1 ∶ 0) and λ1 = (d) = λ2. We compute
the Hurwitz number H

0
d
Ð→0
((d), (d)). One can show (see Example 6.1.7. [RC]) that there exists

only one map f ∶ P1 → P1 satisfying (0,0, d, (d), (d)).
We can either describe f by using the chart ϕ1 ∶ U1 = {(X ∶ Y ) ∶ Y ≠ 0}→ C, (X ∶ Y )↦ X

Y =∶ x for

both target and source and give a local expression on ϕ(U1), i.e. x ↦ xd. Extending to infinity
by setting ∞↦∞ (in the chart ϕ1 we call q2 = (1 ∶ 0) the point at infinity and zero q1 = (0 ∶ 1))
yields a holomorphic map on P1 that is fully ramified over 0 and ∞ and unramified else.
Alternatively, we can define f directly by using projective coordinates, i.e. set f ∶ P1 → P1, (X ∶
Y )↦ (Xd ∶ Y d). The automorphism group of f is given by

Aut(f) = {ϕ(x) = ax, a ∈ C and ad = 1}.

Indeed, recall that the automorphisms of P1 are the Möbius transformations that is maps of the

form ϕ(x) =
(ax+b)
(cx+d) where a, b, c, d ∈ C satisfy ac − db ≠ 0. The condition

(ϕ(x))d = f(ϕ(x)) = f(x) = xd

yields the claim. Thus we have

H
0

d
Ð→0
((d), (d)) =

1

∣Aut(f)∣
=
1

d
.

Notice that the computation of these numbers is in general quite hard if we look at the question
from the lens of differential geometry only. In simple cases it is possible to write down the
corresponding Hurwitz maps explicitly, but as genus and degree increase this approach is hardly
fruitful.
A change of perspective. A change of perspective from differential geometry to group theory
enabled Hurwitz to determine the first class of Hurwitz numbers, so-called simple Hurwitz num-
bers which count covers of the projective line with arbitrary ramification profiles λ over 0 and
only simple branch points else (i.e. points with ramification profile (2,1, ...,1)). If we allow
for an arbitrary ramification over two points, we count double Hurwitz numbers. For us simple
ramification does not work. We consider the next more complicated behaviour almost simple
ramification, i.e. λ = (3,1, ...,1). Why? Let us just say for the moment, because we need our
partitions to be odd. The analogue of a double Hurwitz number in the case of almost simple
ramification is still called a double Hurwitz number:

Definition 2.24. Let d, g ∈ N and µ, ν two special partitions of d. We denote the double Hurwitz
number by Hd

g (µ, ν).

The translation into a group-theoretic problem has many advantages. It settles the question of
finiteness for example. Our approach, however, is a different one. Since we do not wish to deprive
the reader from this important part of Hurwitz theory, we state the equivalent formulation in
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the symmetric group below. For details we refer the interested reader to chapter in [RC] for a
beautiful introduction. In short, Hurwitz covers define homomorphisms from the fundamental
group π1(C ∖B, co) of the target surface C, punctured at the branch locus B, to a symmetric
group. These homomorphism are uniquely determined by their value on a generating set of
π1(C ∖B, co) and thus are in bijective correspondence with tuples of permutations. The set of
generators of π1(C ∖B, co) includes loops around the punctures of C whose image encodes the
ramification profile of f at the corresponding branch point. More precisely, the image of such a
loop is a permutation with cycle type given by the ramification profile of f .

Definition 2.25. Fix d, h, n, g positive integers and partitions λ1, ..., λn of d such that the Riemann-
Hurwitz Formula is satisfied. We have

H
g

d
Ð→h
(λ1, ..., λn) =

∣M ∣

d!

where

M ∶= {(σ1, ..., σn, a1, b1, ..., ah, bh) ∈ Sd
n+2h

∶ σi has cycle type λi,

n

∏
i=1

σi
h

∏
i=1
[ai, bi] = id where [ai, bi] ∶= aibiai

−1bi
−1,

⟨σ1, ..., σn, a1, b1, ..., ah, bh⟩ acts transitively on {1, ..., d}}.

We call such a factorization of the identity (σ1, ..., σn, a1, b1, ..., ah, bh) a monodromy representa-
tion of type (g, h, d, λ1, ..., λn).

The take-away message is: counting branched coverings of type (g, h, d, λ1, ..., λn) is as good as
counting tuple of permutation in Sd.

Example 2.26. (Exercise 100. [RC]) We claim H
0

4
Ð→0
((3,1), (2,2)2) = 0. The easiest way to

see this is to count monodromy representations. A monodromy representation is determined by
a tuple (σ1, ..., σ3) in S4 such that σ1 ○ σ2 ○ σ3 = id where σ1 is a 3-cycle and σi for i = 1,2 is a
composition of two disjoint transpositions denoted τ ij for j = 1,2. Note that τ11 ○ τ

1
2 ○ τ

2
1 ○ τ

2
2 can

never be a 3-cycle since S4 does not have enough disjoint transpositions. Choose two disjoint τ11
and τ12 . For the next transposition we have 3 possibilities. First, τ21 is disjoint from τ12 , hence
τ21 = τ

1
1 . But this forces τ

2
2 = τ

1
2 . Second, τ

2
1 = τ

1
2 and thus τ22 = τ

1
1 . The last chance to get a three

cycle is τ12 ○ τ
2
1 is a 3-cycle. But because of the disjointness condition τ22 cannot be τ11 since τ21

contains only one element of τ12 and thus one of τ11 as well.

Degeneration formulas We motivated our interest for nodal curves by identifying these as
limits of a degeneration procedure. This procedure is what will simplify the count of Hurwitz
numbers and give rise to the so-called Degeneration formulas.

11
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Figure 7: Degeneration of a Hurwitz cover.

The intuitive idea.Take the Hurwitz cover f ∶ C →D that satisfies the discrete data
(g, h, d, λ1, ..., λn). Draw a loop around two of the branch points on the base curve, shrink it
simultaneously with its preimage on the source curve until both, C and D, become singular.
We end up with a cover f0 of nodal curve D = D1 ∪D2 by a nodal curve C = C1 ∪ C2. Such a
degenerate cover consists of a glued pair of Hurwitz covers (f1 ∶ C1 → D1, f2 ∶ C2 → D2) for the
separate discrete data (g(C1), g(D1), d, λ1, ...λn−2,m) and (g(C2), g(D2), d,m,λn−1, λn) where
g(C) = g(C1) + g(C2) and g(D) = g(D1) + g(D2). Of course, these maps fit together over the
nodes, i.e. they have matching ramification profile m there.
This suggests: Instead of counting Hurwitz covers of D, rather count covers of D1 and D2

separately. However, we need to take into account different possibilities of gluing these Hurwitz
cover together or, in put the other way around, keep track of the fact that different Hurwitz
covers can degenerate to the same nodal cover. No matter how you choose to look at it, this
gives rise to the factors in the formulas below.

Theorem 2.27 (Theorem 7.5.1[RC]). Let m = (m1, ...,ml) be a partition of a positive integer d.
The order of the centralizer of any permutation of cycle type m in Sd is given by m!∣m∣, where
m! = ∣Aut(m)∣ and ∣m∣ =∏l

i=1mi. Then the following formulas hold for all Hurwitz data:

1. Reducing the genus of a higher genus base curve

H●
g

d
Ð→h
(λ1, ..., λs) =∑

m

m!∣m∣H●
g−l(m)

d
Ð→h−1

(λ1, ..., λs,m,m)

2. Base curve of genus zero: reducing branch points

H●
g

d
Ð→0
(λ1, ..., λs, µ1, ..., µt) =∑

m

m!∣m∣H●
g1

d
Ð→0
(λ1, ..., λs,m)H

●
g2

d
Ð→0
(m,µ1, ..., µt).

Here, g1 and g2 are determined by the Riemann-Hurwitz formula and satisfy the condition
g1 + g2 + l(m) − 1 = g, where l(m) denotes the length of the partition m.

Thus, (disconnected) Hurwitz numbers display a recursive structure, i.e. they can be expressed
as a product and sum of Hurwitz numbers either of lower genus or with fewer ramification
profiles. Iterating these degeneration steps yields the following important result.
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Lemma 2.28 (Theorem 7.5.3. [RC]). All disconnected Hurwitz numbers can be expressed in
terms of Hurwitz numbers H●

g
d
Ð→0
(λ1, λ2, λ3), i.e. where the genus of the base curve is 0 and

there are only 3 ramification conditions imposed.

Remark 2.29. There are degeneration formulas for connected Hurwitz numbers as well. Express-
ing connected Hurwitz numbers in terms of connected Hurwitz numbers is more challenging since
degenerating a connected curve C can produce more than two connected components.

C C0

Write somewhere marking of all rams and branchs.

Dual graph A first step towards tropical geometry is to define an object that encodes combi-
natorial information about a curve.

Definition 2.30 (Dual graph 2.1. [CMR16]). Let C be a nodal curve. We construct the dual
graph ΓC in the following way::

• For each irreducible component Cv draw a vertex v with weight g(v) defined as the genus
of Cv.

• For each node draw an edge e, where e is incident to a vertex v if the node is contained in
the irreducible component dual to v.

If C is a marked curve, we add an end for each marked point p and attach it to the vertex v
dual to the component containing p.

C

q1

0

1 1

Figure 8: Dual graph of a nodal curve with one marked point.

As usual when associating a new object to an old one, it is crucial to know exactly what
information is preserved and what is lost in the process. The dual graph remember:

1. the number of irreducible components together with their genus.

2. how these components intersect.

3. how marked points are distributed on the curve.

The dual graph does not remember the isomorphism type of the curve.
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3 Tropical Hurwitz theory

By filtering out the noise of algebraic complexity and extracting the relevant combinatorial data,
Hurwitz was able to reduce the problem of counting covers with fixed ramification data to a
purely combinatorial one of the symmetric group. This “extraction of combinatorial data” and
simplification of algebraic geometry is what tropical geometry is all about.

Where tropical geometry comes into play...

Following the step-by-step procedure 1.1 to tackle Hurwitz’s problem we end up with a tropical
Hurwitz theory. Step 1 is clear since we have our algebraic problem. For step 2 we ask: What
are the objects we care about and should tropicalize? Riemann surfaces and maps between
them. This leads us to the notion of tropical Hurwitz covers, i.e. maps between graphs sat-
isfying some additional conditions. In the easiest case, branched coverings of P1, we consider
maps, whose target is just a line. Step 3 is where the magic happens. The definition of tropical
Hurwitz numbers is just a weighted count of graphs. Appreciate this, the original task, e.g.
determine H

1
3
Ð→0
((3), (3), (3), (3)) only using the geometric definition, tropicalized, becomes:

draw all graphs with two vertices, two ends of weight 3 plus some other conditions. This is
doable. Figure 9 shows all graphs counting towards H

1
3
Ð→0
((3), (3), (3), (3)). Remains the last

step. How are these numbers related to Hurwitz numbers? The answer is they are equal! This
is the result of a non-trivial theorem, a correspondence theorem, which is a strive-to result in
tropical geometry.

3 3 31

1

33
1

Figure 9: Tropical covers that contribute to H
1

3
Ð→0
((3), (3), (3), (3)) .

3.1 Tropical covers

Let us take a step back for a minute and start by introducing analogous objects on the tropical
side. Consider a connected graph Γ and denote by E(Γ) the set of edges and by V (Γ) the
set of vertices. The valence val(v) of a vertex v ∈ V (Γ) is the number of edges adjacent to v.
Half-edges, i.e. edges that are adjacent to one vertex only, are called ends. Edges that are not
ends are called bounded.

Definition 3.1. An abstract tropical curve (Γ, l, g) is a graph Γ with

1. a metric l ∶ E(Γ) → R ∪∞ on the edges, such that l(e) = ∞ if e is an end, and l(e) ∈ R
otherwise.

2. a weighting g ∶ V (Γ)→ Z on the vertices.

The value of g at a vertex v is called the genus of v.

The genus of Γ is g(Γ) ∶= b1(Γ) + ∑
v∈V (Γ)

g(v), where b1(Γ) ∶= ∣E(Γ)∣ − ∣V (Γ)∣ + c(Γ) and c(Γ) is

the number of connected components of Γ.
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We say Γ is stable, if for all v ∈ V (Γ) we have

2g(v) − 2 + val(v) > 0.

This means that each genus 0 vertex has to be at least trivalent and 2-valent vertices have to
be of higher genus.

Remark 3.2. We want to view Γ as the dual graph of an algebraic curve C and g(v) as the
genus of an irreducible component of C dual to v. The definition of stability for graphs is just
a tropical version of the one for curves, i.e. if C is stable (stability in algebraic geometry is
given by finiteness of the automorphism group), so is its dual graph. The metric on Γ adds data
beyond the information given by the dual graph. It encodes the “speed” at which a node in a
family of algebraic curves that degenerate to C is formed.

Next we are interested in structure preserving maps.

Definition 3.3 ([CJM10]). Two abstract tropical curves Γ1 and Γ2 are called isomorphic if there
is a homeomorphism Γ1 → Γ2 such that every edge of Γ1 is mapped bijectively onto an edge of
Γ2 by an affine map of slope ±1, i.e. by a map of the form t→ a± t (where a = 0 or a = l(e), and
we again identify an edge of length l(e) with the interval (0, l(e))).
The combinatorial type of an abstract tropical curve is the equivalence class obtained by iden-
tifying any two isomorphic tropical curves such that the genus function is preserved.

If we work with tropical curves whose ends are labelled, we require, in addition, that the labelling
is preserved.

Example 3.4. Figure 3.4 shows an abstract tropical curve of genus 2 with the metric written
next to each edge on the right and the corresponding combinatorial type on the left.

l = 3,45

l = 1

l = 5 l = 0,1

l = 4

l =∞
l =∞

Figure 10: Abstract tropical curve and its combinatorial type. Vertices without labelling are
assumed to have genus 0.

Definition 3.5 (Definition 3.1 [Mar20]). Let Γ and B be abstract tropical curves. We call Γ a
tropical cover of B if there exists a surjective map h ∶ Γ→ B such that h is

1. locally integer affine linear, i.e. h restricts on each edge e to an affine linear function
h∣e ∶ [0, l(e)] → R ∶ t ↦ a + ω(e)t whose slope is a positive integer called the weight (or
expansion factor) ω(e).

2. balanced/harmonic: Let v ∈ Γ and e′ adjacent to h(v). We require the integer
dv ∶= ∑

e↦e′
ω(e) to be independent of the choice of e′. In this case call dv the local degree of

h at v.

In addition, we require images and preimages of vertices to be vertices.

Example 3.6. If we consider covers of the tropical line, the balancing condition can be rephrased
as: for every vertex v we have that the sum of in-going weights is equal to the sum of out-going
weights. Below is an example of a non-harmonic map. The balancing condition is violated at v.
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A tropical cover h is a tropical Hurwitz cover if at every point v ∈ Γ the local Riemann Hurwitz
condition (3.2.1. in [CMR16]) is satisfied, i.e. we have

0 ⩽ dv(2 − 2g(v
′
)) −∑(ω(e) − 1) − (2 − 2g(v)) =∶ rv, (1)

where h(v) = v′ and the genus function g is extended on Γ by mapping points that are not
vertices to 0.

Remark 3.7. This condition is necessary for the existence of a degenerate algebraic Hurwitz
cover of degree dv locally (i.e. at v) “dual” to h (dual in the sense of definition 3.23). It is an
example of a realizability condition.
In the following we consider two cases:

1. rv = 0 for all v ∈ V (Γ) (subsection 3.3).

2. rv = 2 for all v ∈ V (Γ) (subsection 3.2).

In case 1 we move all the ramification to the ends of the tropical curve. This approach makes
translating the algebraic count of Hurwitz numbers to tropical geometry (via degeneration)
particularly clear since it allows us to see all the ramification behaviour happening on the level
of algebraic curves on the level of graphs as well. We have a bijection between the algebraic
ramification/branch points and the ends of the respective tropical curves. This is the setting
in which Bertrand, Brugallé and Mikhalkin define general tropical Hurwitz numbers. We will
adopt this convention when working with base curves of arbitrary genus (in section 5, especially
subsection 5.1.3).
In case 2 we allow for almost simple ramification (with ramification profile equal to (3,1, ...,1))
at the interior of the curve (see definition 3.8). This approach is useful when defining tropical
Hurwitz numbers in analogy to classical Hurwitz numbers as intersection products ([BM14]) (and
saves us from drawing all additional ends). This is the definition we use when working with
tropical (spin) Hurwitz numbers for elliptic curves and for TP1 (subsection 5.1.1). Proposition
3.25 shows that both definitions are compatible, i.e. adding additional ends in case 1 does not
affect the count.

Just like in the classical world we can define the degree, branch and ramification points of a
tropical Hurwitz cover.

Definition 3.8. Let h ∶ Γ → B be a tropical Hurwitz cover. We call d ∶= ∑p1∈h−1(p2) dp, where p2
is an arbitrary point of B, the degree of h. In case 1 of remark 3.7 we call a vertex of B adjacent
to an end e a (unmarked) branch point. Its preimages are called (unmarked) ramification points
with ramification profile given by the collection of weights of ends mapping to e. These form
a partition of d.1 If for v ∈ V (Γ) the integer rv defined in (1) is positive, we say that v is an
(unmarked) ramification point ([BM14], Definition 2.2). In this case its image h(v) is called an
(unmarked) branch point of B. If rv = 2 (case 2 of remark 3.7), the vertex v is an almost simple
ramification.

1This is a consequence of the balancing condition.
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By forgetting about the metric on base and cover curve we obtain the combinatorial type of a
Hurwitz cover. This is the data we want to work with. Since choosing a metric on the base
curve together with a weighting on the edges of the cover curve determine a metric on the
cover in a unique way, we do not need to encumber drawings with this additional information.
Indeed, remember that a tropical Hurwitz covers restricts to an affine integer linear function
on each edge e ∈ E(Γ) whose slope is just given by the weight ω(e). This yields the relation
l(e′) = l(e)ω(e), where e↦ e′.
Figure 11 shows an example of a tropical Hurwitz cover of degree 3 with 2 branch points, in the
top row on the left, with 4 branch points with ramification profile (3), in the top row on the
right and a tropical cover in the bottom row. Note that the local Riemann Hurwitz condition
is violated at the right vertex (denoted by v) since

dv(2 − 2g(v
′
)) −∑(ω(e) − 1) − (2 − 2g(v)) = 2(2 − 0) − 3(2 − 1) − (2 − 0) = −1 < 0.

The balancing condition, however is satisfied.

33

1

1

1
33

1

1

1

3
3

h h

v

Figure 11: Fig.6 in [Mar20] on the bottom.

Remark 3.9. Just like in the classical world tropical Hurwitz numbers count tropical Hurwitz
covers. There are two approaches in the literature that make this statement precise. These
correspond to the two cases considered in remark 3.7. The first goes back to Bertrand, Brugallé
and Mikhalkin (see case 1) and the second to Markwig, Cavalieri and Johnson (case 2 for sim-
ple ramification). Along a different vein, they introduce tropical Hurwitz numbers via tropical
intersection theory: They establish a moduli space of tropical covers together a tropical branch
map that records the images of the simple ramifications ([BM14]) and whose degree is defined
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to be the tropical Hurwitz number. A correspondence theorem was proved by matching tropical
Hurwitz covers to monodromy graphs. These are graphical representations of the cut and join
equations in the symmetric group and can be used to count monodromy representations. Trans-
ferred to the tropical world they give rise to tropical Hurwitz covers that satisfy the Riemann
Hurwitz condition with “⩽” rather than “=”. The transition to case 1 of remark 3.7 simply
requires adding ends where needed and declaring all preimages of vertices to be vertices. This
was done in the top row of figure 11.

For the purpose of this thesis we mostly consider 3-valent base (2-valent respectively when
suppressing additional ends) curves with genus 0 vertices only. Inspired by the degeneration
perspective, we call such a tropical curve B maximally degenerate. Indeed, in this case the lift of
B to a nodal curve is a maximal stable degeneration, i.e. the result of an algebraic degeneration
ad extremum.
The treatment of the general case, i.e. the analysis of tropical covers of an arbitrary but fixed
maximally degenerate base curve B (together with a set of n ends and n ramification profiles),
is difficult for several reasons (see section 3.3). We will restrict to selected special cases.

3.2 Tropical Hurwitz numbers for TP1 and TE

In this section we consider the two special cases where the target curve is either B ∶= TP1

or B ∶= TE (figure 12). The first is an already existing result in [Hah14] and the second a
generalization of tropical covers of elliptic curves with only simple ramification considered in
[BGM18] to almost simple ramification. Both results are established in the context of case 2 of
remark 3.7.

TETP1

Figure 12: The tropical line on the left and a tropical elliptic curve on the right.

Tropical 3−cycle covers of TP1.

Definition 3.10 (Connected 3-cycle coverings based on Definition 4.9. [Hah14]). Fix integers
s, g, d and partitions µ and ν of d satisfying 2s = 2g − 2+ l(µ)+ l(ν). Set B = TP1 with s vertices
of genus 0. A tropical 3-cycle cover of TP1 is a tropical cover h ∶ Γ→ B, such that

1. Γ is of genus g,

2. the ramification profile over the left end is µ and over the right end ν,

3. the preimage of one of the s vertices is either a 4-valent vertex of genus 0 (type (i),(ii),(iii)
in figure 13) or a 2-valent vertex of genus 1 (type (iv) in figure 13).
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Figure 13: Possible inner vertices for a tropical 3-cycle cover (Figure 4.4 in [Hah14]).

To alleviate notation we introduce the following:

Definition 3.11 (Definition 6.3. [Hah14]). Let Γ be a tropical curve such that there is a tropical
3-cycle cover h ∶ Γ→ TP1.

1. A vertex of type (ii) in figure 13 is called a butterfly vertex.

2. A balanced single fork consists of two ends of weight n sharing the same vertex (see figure
14 (viii)-(ix)).

3. A balanced double fork consists of three ends of weight n sharing the same vertex (see
figure 14 (vi)-(vii)).

4. A single wiener consists of two bounded edges of weight n, sharing the same two end
vertices (see figure 14 (ii)-(iv)).

5. A double wiener consists of three bounded edges of weight n, sharing the same two end
vertices (see figure 14 (i)).
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Figure 14: Figure 6.5. [Hah14]

Remark 3.12. Tropical 3-cycle covers are shadows of algebraic Hurwitz covers of P1 with k ∶= s+2
branch points. Over two of them we allow for arbitrary ramification behaviour, otherwise we
settle for almost simple ramification profile that corresponds to the ramification at the interior
of the tropical source curve.

Like algebraic Hurwitz numbers, tropical Hurwitz numbers count tropical Hurwitz covers with
a certain multiplicity.

Definition 3.13 (adapted from Definition 4.11. in [Hah14]). Let h ∶ Γ→ TP1 be a tropical 3-cycle
cover of TP1. We define its multiplicity, mult(h), to be

mult(h) ∶=
1

∣Aut(Γ)∣
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V 1(Γ)

(ω(ev) − 1)((ω(ev) − 2))

3!
2∣I ∣+∣J ∣0∣K∣,

where

• V 1(Γ) is the set of genus 1 vertices and for v ∈ V 1(Γ) ev denotes the incoming edge.

• ∣Aut(Γ)∣ = 3!W1+W22F1+F2 , where W1, respectively F1 is the number of single Wiener,
respectively single balanced forks and W2, respectively F2 is the number of double Wiener,
respectively double balanced forks.

• J is the set of 4-valent vertices as in figure 13 (ii) with µ1 ≠ µ
′
1 and µ1 ≠ µ

′
2.

• K is the set of 4-valent butterfly vertices with µ1 = µ
′
1 = µ1 = µ

′
2.

• I is the set of 4-valent vertices as in figure 13 (i) and (iii).

Remark 3.14. We changed the multiplicity definition in [Hah14] by a factor of 1
3! for each genus

1 vertex to take into account that the order of elements in the 3-cycle is fixed by permutation
it acts upon (see Lemma 5.8. (iv) [Hah14]).

The case of degree 3 covers with ramification profile (3) over ±∞ is of special interest to us.
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Example 3.15. Fix a positive integer k > 2 and consider a tropical 3-cycle cover Γ of TP1 with
branching profile (3) over ±∞ and s = k − 2 almost simple branch points. Note, if Γ has an
inner vertex of type (ii) (figure 13), than mult(Γ) = 0. We see, if mult(Γ) > 0 than Γ consists of
the two building blocks shown in figure 15 that is a double Wiener and genus 1 vertex. These
can be glued to each other in any order to obtain a graph with k − 2 inner vertices and thus all
possible covers. The multiplicity simplifies to

mult(h) =
1

3!W2

1

3

∣{v∶g(v)=1}∣
∏

e∈E(Γ)bounded
ω(e)22W2

=
2

3

W2 1

3

∣{v∶g(v)=1}∣
∏

e∈E(Γ)bounded
ω(e).

33

1

1

1
33

10 0

Figure 15: The two buildings blocks with genus function in red.

Tropical 3−cycle covers of TE. Intuitively, tropical 3−cycle covers of an elliptic curve are just
3−cycle coverings of TP1 with ramification profile (3) over ±∞ glued together along the two
outer ends.

Definition 3.16. Fix an integer g and set B = TE, a circle with s = g − 1 vertices of genus 0. A
tropical 3-cycle cover of TE is a tropical Hurwitz cover h ∶ Γ→ TE, such that

1. Γ is of genus g,

2. the preimage of each of the s vertices is just like in definition 3.10 except that balanced
forks cannot occur.

The multiplicity of h is analogous to the one in definition 3.13.

TE

Γ mult(h) = 2
3 ⋅

1
3 ⋅ 3

2 = 2

h

Figure 16: Tropical elliptic cover of degree 3 for s = 3 and multiplicity.
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Definition 3.17. Fix integers s, g, d and partitions µ and ν of d satisfying 2s = 2g−2+ l(µ)+ l(ν).
Let B be as in definition 3.10. The tropical double Hurwitz number TH

g
d
Ð→0
(µ, ν) is defined as

TH
g

d
Ð→0
(µ, ν) ∶=∑

h

mult(h),

where the sum goes over all tropical 3-cycle covers h as in definition 3.10.
Fix integers s, g, d satisfying s = g − 1. Let B be an elliptic curve with s inner vertices. The
tropical Hurwitz number with almost simple branching TH

g
d
Ð→1

is defined as

TH
g

d
Ð→1
∶=∑

h

mult(h),

where the sum goes over all tropical 3-cycle covers h as in definition 3.16.

We have the following correspondence.

Theorem 3.18 (Theorem 6.7. [Hah14]). Fix integers s, g, d and partitions µ and ν of d satisfying
2s = 2g − 2 + l(µ) + l(ν). Then:

H
g

d
Ð→0
(µ, ν) = TH

g
d
Ð→0
(µ, ν).

Theorem 3.19. Fix integers s, g, d satisfying s = g − 1. Then:

H
g

d
Ð→1
((31...1)s) = TH

g
d
Ð→1

.

Hahn proves theorem 3.18 by matching graphical representations of generalized cut-and-join re-
lations in the symmetric group to combinatorial types of tropical covers. From the degeneration
perspective the idea of the proof is following:
Let us first interpret tropical covers as shadows of degenerate Hurwitz cover . To do this we go
back to the degeneration formulas 2.27. Any Hurwitz number can be expressed in terms of Hur-
witz numbers of type H

g
d
Ð→0
(λ1, λ2, λ3). Algebraically this corresponds to counting degenerate

Hurwitz covers of a maximal stable degeneration D of P1, i.e. the base curve D consists only
of spheres, where each sphere is glued to other spheres at exactly three points. We are just one
step away from the tropical world. Taking dual graphs of base and cover curve together with
the obvious map of graphs yields a tropical Hurwitz cover. The weights encode the ramification
profiles over the nodes. Think of it as clever book-keeping of the factors coming out of the de-
generation formulas. This process is not injective, we may have many maps lying over a tropical
cover. However, we know exactly how many! This information is given by the multiplicity. We
will see precisely how the tropical multiplicity is linked to the degeneration formulas in the next
sections.

3.3 Tropical Hurwitz numbers for arbitrary base curves

In [BBM11], Bertrand Brugallé and Mikhalkin define general Hurwitz numbers tropically and
prove a correspondence theorem using topological degeneration.
Fix integers s, h, g, d and partitions λ1, ..., λs of d satisfying the Riemann-Hurwitz formula.

Definition 3.20. Fix a maximally degenerate base curve B of genus h together with a set of
s ends. A tropical Hurwitz cover that counts towards TH

g
d
Ð→h
(λ1, ..., λs) is a Hurwitz cover

h ∶ Γ→ B as in definition 3.8 such that

1. Γ is of genus g,
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2. ends of Γ mapping to the i-th end of B are labelled with the parts of λi.

Let v be a vertex of Γ. Since the base curve B is trivalent, h(v) is adjacent to 3 edges, e1, e2, e3.
By the balancing condition edges mapping to ei define a partition nv

i of dv, where dv is the local
degree at v and i = 1,2,3. We call the number

Hv ∶=H
g(v)

dv
Ð→0
(nv

1, n
v
2, n

v
3)

the local Hurwitz number of Γ at v.

Definition 3.21. The tropical Hurwitz number TH
g

d
Ð→h
(λ1, ..., λs) is defined as

TH
g

d
Ð→h
(λ1, ..., λs) ∶=∑

h

mult(h),

where h ∶ Γ→ B is a tropical Hurwitz cover and

mult(h) ∶=
1

∣Aut(h)∣
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!Hv

is the multiplicity of h given in Definition 2.6. ([BBM11]).

Note that this notion of multiplicity is natural in light of our the degeneration perspective. We
recognize that it is just the collection of all factor produced by the degeneration formulas (see
section 5).
We have a correspondence.

Theorem 3.22. (Theorem 2.11. [BBM11]) For any integers s, h, g, d and partitions λ1, ..., λs of d
satisfying the Riemann-Hurwitz formula we have

TH
g

d
Ð→h
(λ1, ..., λs) =H

g
d
Ð→h
(λ1, ..., λs).

Proof idea. A usual, thanks to the degeneration formulas we can count Hurwitz covers of a
maximal stable degeneration of the base curve instead. To such a map we may associate a map
of graphs.

Definition 3.23 (Dual graph of covers 3.2. [CMR16]). Let f ∶ C0 →D0 be a degenerate Hurwitz
cover. We construct the dual cover h ∶ ΓC0 → ΓD0 in the following way::

• Take the dual graph of the source and target curves in the sense of definition 2.30 and call
them ΓC0 and ΓD0 .

• The map between them is a well-defined map of graphs: For a Hurwitz cover, a component
of the source maps onto precisely one component of the target, yielding a map of vertices.
Since nodes map to nodes, edges map to edges.

• Weighting. We mark edges of ΓC0 with integers recording the ramification at the corre-
sponding node or marked point of the source curve.

The corresponding tropical Hurwitz cover is essentially a metrization of the dual map and its
multiplicity equals the number of covers which degenerate to it.

Ends or no ends. We want to point out that the definition of tropical Hurwitz covers given in
subsection 3.2 and subsection 3.3 differ as remarked in 3.7. A priori it is not obvious that both
counts agree.
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Example 3.24. The multiplicity of tropical 3−cycle coverings of degree 3 given in example 3.15
agrees with the one in definition 3.21. By inspection of the degeneration formulas we can list

all possible local Hurwitz numbers: H
1

3
Ð→0
((3)3) = 1

3 , H0
3
Ð→0
((3)2, (13)) = 1

3 ,H0
3
Ð→0
((3), (13)

2
) =

0, H
0

3
Ð→0
((3), (2,1)2) = 1, H

0
3
Ð→0
((3)2, (2,1)) = 0. Note that at least one of the ramification

profiles (i.e. one of the three partitions) of a local Hurwitz number has to be the partition (3)
since all vertices of B ∶= TP1 are branch points with prescribed ramification profile (3). Indeed,
under the degeneration process branch points are distributed onto the irreducible components
of the nodal curve such that each one contains at least one branch point.
This gives us construction guidelines for tropical Hurwitz covers of degree 3: All possible inner
vertices are given by the local Hurwitz numbers from above. The matching tropical pictures
are shown in figure 17. Note, whenever we have a vertex of type (5) (figure 17), we also have
a vertex of type (4) (figure 17) that contributes with a factor of 0 to the multiplicity of the
respective cover. For this reason we do not consider this case: In order to obtain a vertex of
type (5), we have to put ourselves into the condition of having one strand of weight 2 and one of
weight 1. We start from a strand of weight 3 over −∞. We can either split it into three strands
of weight 1. To get a strand of weight 2 from here requires us to join two of them, but such a
vertex has local Hurwitz number 0. Hence, we can only create a strand of weight 2 and a strand
of weight 1 by splitting the strand of weight 3 directly according to a vertex of type (4).
Using ∣Aut(h)∣ = 3!W2 , (13)! = 3! and (3)! = 1 and substituting in definition 3.21 we obtain

mult(h) =
1

3!W2
∏

e∈E(Γ)bounded
ω(e)

1

3

∣{v∶g(v)=1}∣
(3!)∣{v∶g(v)=0}∣

1

3

∣{v∶g(v)=0}∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=22W2

=
2

3

W2 1

3

∣{v∶g(v)=1}∣
∏

e∈E(Γ)bounded
ω(e).

The last equality follows by observing ∣{v ∶ g(v) = 0}∣ = 2W2.

33 g = 1

3

3

3

2

1

3

2

1

1

1

3

1

1

1

3

1
1

1

3

2

1

1

(1)

(2)

(3)

(5)

(4)

Figure 17: Vertices with corresponding local Hurwitz numbers.

Proposition 3.25. For B = TP1 or B = TE the Hurwitz numbers defined in subsection 3.2 and
subsection 3.3 agree.
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Proof. Let h ∶ Γ → B be a 3-cycle covering as in subsection 3.2. To obtain a tropical Hurwitz
cover in the sense of definition, we need to make the following adjustments:

• add an end at each inner vertex of B such that B is trivalent.

• for each v′ ∈ V (B) add one end of weight 3 and d(v) − 3 ends of weight 1 at the vertex
v ∈ h−1(v′).

• for each point p ∈ h−1(v′) ∖ V (Γ) (i.e. p is a point on an edge e) create a genus 0 vertex
on e and add ω(e) ends of weight 1.

Call h′ ∶ Γ′ → B′ the new cover. It is obvious that this process yields a bijection between isomor-
phism classes of tropical covers that contribute to the Hurwitz numbers defined in subsection
3.2 and the ones defined in subsection 3.3.
We can rewrite the contribution of h to the first count (definition 3.13) in terms of local Hurwitz
numbers as

mult(h) =
1

∣Aut(Γ)∣
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)
n1
v!n

2
v!Hv,

where n1
v and n2

v are the partitions of d(v) given by the weights of the incoming and outgoing
edges. Indeed, we only have to notice that the vertex contributions from definition 3.13 match
the product of the respective local Hurwitz number Hv (computed in Lemma 7.8. ([Hah14]))
with an automorphism factor from the local partitions n1

v and n2
v.

The new cover h′ is counted with the multiplicity defined in 3.21:

mult(h′) =
1

∣Aut(Γ′)∣
∏

e∈E(Γ′)bounded
ω(e) ∏

v∈V (Γ′)
n1
v!n

2
v!n

3
v!Hv.

We have: ∣Aut(Γ′)∣ = ∣Aut(Γ′)i∣ ⋅ ∣Aut(Γ
′)e∣, where Aut(Γ

′)e denotes the automorphism that only
permute ends and map interior edges identically and Aut(Γ′)i denotes the automorphism that
map ends identically. It holds that ∣Aut(Γ′)i∣ = ∣Aut(Γ)i∣, whereas ∣Aut(Γ

′)e∣ changes according
to the possibilities to permute the additional ends of weight 1, i.e. by a factor of (d(v) − 3)! for
each vertex v ∈ V (Γ) ∩ V (Γ′) and by a factor of ω(e)! for each newly created vertex on an edge
e.
Newly created vertices are weighted by

ω(e)!H
0

ω(e)
ÐÐ→0

((ω(e)), (ω(e)), (1, ...,1)) = ω(e)! ⋅
1

ω(e)
= (ω(e) − 1)!

and provide an additional bounded edge of weight ω(e). For a vertex v ∈ V (Γ) ∩ V (Γ′) we get
a new factor of (d(v) − 3)! for the partition (3,1, ...,1). In total we see that new contributions
cancel out. It follows that the two expressions agree.

Note that proposition 3.25 together with correspondence theorem 3.22 prove theorem 3.19 in
section 3.2.

3.4 Tropical disconnected Hurwitz numbers

Tropical disconnected Hurwitz numbers are defined in analogy to algebraic disconnected Hurwitz
numbers, i.e. we allow tropical covers of B to be disconnected.

Definition 3.26. Fix a maximally degenerate base curve B of genus h together with a set of
s ends. A tropical Hurwitz cover that counts towards TH

g
d
Ð→h
(λ1, ..., λs) is a Hurwitz cover

h ∶ Γ→ B as in definition 3.8 such that
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1. Γ is a (possibly disconnected) curve of genus g,

2. ends of Γ mapping to the i-th end of B are labelled with the parts of λi.

The disconnected tropical Hurwitz number TH●
g

d
Ð→h
(λ1, ..., λs) is defined as

TH●
g

d
Ð→h
(λ1, ..., λs) ∶=∑

h

mult(h),

where h ∶ Γ→ B is a tropical Hurwitz cover and

mult(h) ∶=
1

∣Aut(h)∣
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!Hv.

Remark 3.27 (see [BGM18]). The multiplicity of a disconnected cover h ∶ Γ → TP1 or a discon-
nected cover h̃ ∶ Γ→ TE is given by

mult(h) =
1

∣Aut(h)∣
∏
K

1

ωK
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!Hv

mult(h̃) =
1

∣Aut(h̃)∣
∏
K

1

nK
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!Hv

where the first product in the first row goes over all connected components K of Γ that just
consist of one single edge with weight ωK . The first product in the second row runs over all
connected components K of Γ that just consist of a single circle that winds around the circle
nK times.

Just like in the the connected case we have a correspondence between the tropical and the
classical count.

4 Spin Hurwitz theory

Spin Hurwitz numbers are, quite similar to Hurwitz numbers, a weighted count of ramified
covers. The subtle difference lies in the weighting where for each ramified cover we include the
additional information of a sign. Where does this sign come from? It is given by the parity of a
“pullback theta characteristic”. We see that we need further introduction into the world of spin
curves and theta characteristics.

4.1 Theta characteristics and theta hyperplanes

A modern view. From the modern point of view theta characteristics are roots of the canonical
bundle.

Definition 4.1. Let C be a smooth curve of genus g with canonical class KC of C. Any divisor L,
such that 2L =KC , is called a theta characteristic of C. A theta characteristic is even respectively
odd according to the parity of the dimension h0(C,L) of the vector space H0(C,L).
Equivalently (Definition 9 [Ser17]): Denote by ωC the canonical bundle. We call a line bundle
L on C such that L⊗2 ≅ ωC a theta characteristic of C.

Example 4.2. Let C = P1. The canonical class on P1 is given by −2P for any point P ∈ P1.
Thus, up tp linear equivalence there is only one theta characteristic −P of even parity since
deg(−P ) < 0 implies that h0(P1,−P ) = 0.
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A classical view. Having a definition in terms of abstract curves is useful in many ways ([Ser17]).
To develop an intuition, however, a visual approach is better suited. Thus, let us look at the
“embedded” version of theta characteristics, theta hyperplanes. In general, there are many ways
to embed a curve into projective space. It turns out, however, that the canonical embedding
(and its multiples) is the only one useful for deformation theoretic arguments since it is the only
one that can be deformed together with the curve (see p.4 [Ser17]).

Definition 4.3 ([Ser17], Definition 7). Let C be a non-hyperelliptic genus g curve with ϕ ∶ C →
P(V ) ≅ Pg−1 the canonical embedding (definition 2.16). Then for any hyperplane H ⊂ P(V ) the
intersection KC ∶= ϕ

∗(H) = H ⋅ C gives a divisor KC of degree 2g − 2 on C called a canonical
divisor. If H ⋅C = 2N for a divisor N in C then H is called a theta hyperplane.

Example 4.4. Let C be a non-hyperelliptic curve of genus 3. Then ϕ ∶ C → P2 is an embedding
whose image is a curve of degree 2 ⋅ 3 − 2 = 4, a plane quartic (figure 18). Its theta hyperplanes
are the classical 28 bitangents. (p.5 [Ser17]).

Thus, we can think of theta characteristics as intersection divisor that arise from the intersection
of ϕ(C) with a hyperplane H if all intersection multiplicities are even.

H1

H2

H3

Figure 18: The real part of the Edge quartic (Figure 1. [PSV11]) C together with 3 theta
hyperplanes H1,H2 and H3 and theta characteristics given by Li = P

i
1 +P

i
2, where P

i
1

and P i
2 are the intersection points of multiplicity 2 of Hi with C for i = 1,2,3.

Denote by ∣L∣ the complete linear system of the line bundle L. Using the correspondence of line
bundles and divisors we can think of ∣L∣ as the set of all effective divisors D′ linearly equivalent
to D, where OC(D) ≅ L. We have a bijective correspondence

{(L,D) ∶ L is a theta characteristic and D ∈ ∣L∣}↔ {H ⊂ P(V ) ∶ H is a theta hyperplane }.

Take D ∈ ∣L∣. Since L⊗2 ≅ ωC and addition of divisors corresponds to taking tensor products
of the corresponding line bundles, we get 2D ∈ ∣L⊗2∣ = ∣ωC ∣. Hence 2D is a canonical divisor
and H ∶= ϕ(2D) is a hyperplane intersecting C ≅ ϕ(C) in 2D, i.e. H satisfies ϕ∗(H) = 2D.
Conversely, given a theta hyperplane H the line bundle OC(N) is a theta characteristic, where
N is the divisor in definition 4.3.

Definition 4.5 (Definition 13([Ser17])). A tuple (C,L,α), where C is a curve of genus g, L is
an odd (or even) theta characteristic and α ∶ L⊗2 → ωC is an isomorphism, is called an odd (or
even) spin curve.
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Following Lee and Parker in [LP13] we will sometimes refer to the tuple (C,L) as a spin curve
and omit mentioning the isomorphism α.

Theorem 4.6 (Theorem 10. in [Ser17]). On a genus g curve C there are (2
g

2
) odd and (2

g+1
2
) even

theta characteristics.

Example 4.7. Going back to the case of genus 3 theorem 4.6 states that we should have

22⋅3 = 64 bitangents. However, there are only 28. Observe that (2
3

2
) = 28. It seems as though

only odd theta characteristics are visible as theta hyperplanes. Indeed, it can be shown that for
a “general curve” with a theta characteristic L (a notion that can be made precise see [Ser17])
the dimension h0(C,L) is in minimal, i.e. either 0 or 1. This is what happened to the remaining
36 even theta characteristics of our curve of genus 3. They do not admit any non-trivial global
sections.

4.2 Spin Hurwitz numbers

We introduce the counting problem: Fix

• a spin curve (D,N) of genus h with parity p ∶= h0(N) mod 2.

• a collection of points q1, ..., qk ∈D, the prescribed branch points,

• a positive integer d, the prescribed degree,

• a collection m1, ...,mk of odd partitions of d, the prescribed ramification profiles.

Let f ∶ C →D be a Hurwitz cover for the discrete data (h, d,m1, ...mk) (in our notation we omit
the genus of the cover curve since we allow our domain curve to be disconnected). The Euler
characteristic χ(C) of C is fixed by the Riemann Hurwitz formula:

χ(C) = d(2 − 2h) +
k

∑
i=1
(l(mi

) − d).

Bare in mind that we allow ramification over the branch points, q1, ..., qk, only.
Next, define the line bundle

Lf ∶= f
⋆
(N)⊗O(∑

i,j

1

2
(mi

j − 1)xj
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1
2
Rf

),

where mi = (mi
1, ...,m

i
l(mi)) and f(xj

i) = qi for i = 1, ..., k and j = 1, ..., l(mi). The divisor Rf

is the branch divisor of f . Denote by L̃f and Ñ the associated divisors. By theorem 2.19 we
have

2L̃f = 2f
⋆
(Ñ) +∑

i,j

(mi
j − 1)xj

i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Rf

≅KC .

Thus, Lf defines a theta characteristic on C.

Definition 4.8. Let f ∶ C → D be a Hurwitz cover satisfying the discrete data (h, d,m1, ...,mk)

together with its associated theta characteristic Lf , as above. We call the pair (f,Lf) a spin
Hurwitz cover of parity p(f) given by p(f) ∶= h0(C,Lf) mod 2.
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Definition 4.9. Fix the the discrete data (4.2) as above. The spin Hurwitz number of genus h
and parity p is defined as weighted sum of isomorphism classes of spin covers f ∶ C → D with
sign determined by the parity p(f):

H
(h,p)
m1,...,mk =∑

f

(−1)p(f)

∣Aut(f)∣
.

Example 4.10. Set (h, d,m1, ...mk) = (0,3, (3)3) and let f ∶ C → P1 be a map that contributes

to H
(0,+)
(3)3

. Considering the ramification profile (3) = (d) forces C to be connected. In this case

χ(C) = 2 − 2g(C) and the Riemann Hurwitz formula yields g(C) = 1. The canonical class on a
genus 1 curve is KC = 0 (p.2. [EOP08]). For i = 1,2,3 let xi be a ramifications point of f . Recall
from example 4.2 that P1 has only one theta characteristic (unique up to equivalence) given by
−P for any point P ∈ P1. The choices −xi for i = 1,2,3 yield three equivalent divisors:

L̃f ∼ −2x1 + x2 + x3 ∼ x1 − 2x2 + x3 ∼ x1 + x2 − 2x3,

where L̃f is the divisor associated to Lf . Note, 3L̃f ∼ 0 implies L̃f = 0 because 2L̃f = 0 (Lf is
a theta characteristic). Thus Lf is the trivial bundle C × C whose space of global section is a
1-dimensional vector space. This yields Lf = O(L̃f) ≅ O, i.e. p(f) = 1. Hence,

H
(0,+)
(3)3

= −∑
f

1

∣Aut(f)∣
= −H

1
3
Ð→0
((3)3) = −

1

3
.

Deformations of theta characteristics We have seen how useful it is to deform curves until
they break up into simpler components. In order to make a sensible use of such a degeneration
method for spin curves we need to clarify what we mean by “degeneration”.
We introduce the notion of a family of spin curves. Similar to the intuitive notion of a family
of curves, we want to view a family of spin curves as a collection of curves over a base together
with theta characteristics on each fibre. This can be formalized in the following way:

Definition 4.11 ([Ser17], Definition 14). If π ∶ C → ∆ is a smooth family of curves and ωπ is the
relative cotangent bundle of π, then a line bundle L on C, such that L⊗2 ≅ ωπ, is a family of
theta characteristics. If we fix α ∶ L⊗2 → ωπ, then the triplet (C,L, α) is called a family of spin
curves.
One each fibre Ct ∶= π

−1(t), for t ∈∆, the relative cotangent bundle ωπ, restricts to the cotangent
bundle ωCt of the fibre and L to a theta characteristic thereon.

Keeping the idea of applying a degeneration method in mind to simplify the count of spin
Hurwitz numbers, we need to know what happens to the parity of a theta characteristic under
such a deformation. Luckily, Atiyah and Mumford establish the following important result.

Theorem 4.12 (Theorem 15 ([Ser17])). The parity of a spin curve of genus g is a deformation
invariant.

However, degenerating spin curves, i.e. deforming spin curves into singular ones, is more
involved. We need to extend the notion of a theta characteristic to nodal curves. What is the
right way to do so?
Reframing the question. Just as one can consider the moduli space Mg,n of n−pointed curves
of genus g, one can construct a moduli space Sg,n parametrizing spin curves (C,L), where C is
a smooth n−pointed curves of genus g and L a theta characteristic of C. The space Sg,n comes
together with a forgetful morphism ϕ ∶ Sg,n →Mg,n, (C,L)↦ C. In this context we can reframe
the question, how to define a theta characteristics on a nodal curve, as how to define “the right”
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compactification of Sg,n. Of course one would like such a compactification to be compatible
with the Deligne-Mumford compactificationMg,n, i.e. there should be a finite morphism ϕ̄ that
makes the diagram below commute.

Sg,n Ð→ Sg,n

Mg,n Ð→Mg,n

ϕϕ

This was first achieved by Cornalba in [Cor89]. The main difference to Mg,n is that he had
to enlarge the class of singular curves. Instead of considering at worst stable curves, he had to
allow quasistable curves to enter the story.

Definition 4.13 ([CMP20]). Let (C,σ) be a n−marked curve, where C has at most nodes as
singularities and σ = {p1, ..., pn} is a set of distinct and smooth points of C. We say that a
component E ⊂X is exceptional, if E ≅ P1, ∣E ∩ ¯C ∖E∣ = 2 and E ∩ σ = ∅. Then (C,σ) is

1. stable, if C does not contain any exceptional components.

2. semistable, if a smooth rational component meets other components in at at least 2 points.

3. quasistable, if C is semistable and two exceptional components are disjoint.

Indeed, quasistable curves are not so much worse. Given a quasistable curve Ĉ we obtain a
stable one by contracting all the exceptional components (see figure 4.2)

Ĉ

E

C

Conversely, take a stable curve C and a set of nodes R of C. The blow up of C at R is a
quasistable curve Ĉ:
Let νR ∶ C

ν
R → C be the partial normalization map, where νr

−1(r) = {r1, r2} for r ∈ R. Then Ĉ
is defined as

Ĉ ∶= Cν
R ∪ ⋃

r∈R
Er with exceptional components Er.

Why consider quasistable curves in the first place since it is possible to compactify the moduli
space of theta characteristics while insisting on working with stable curves alone? It is a trade-
off: Insist on having at worst stable curves and you have to “allow for singularities for the
sheaves”. Insist on local freeness of the sheaves and you will have to accept dealing with slightly
more singular curves. Choosing the second path, has one considerable advantage. We can view
a degeneration of a theta characteristic as a line bundle on a curve (pg. 7 [Far12])2. This is
exactly what our intuition would tell us. Let us describe the points of Sg,n, i.e. stable spin
curves, in more detail.

2Using the correspondence between locally free sheaves and vector bundles
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Definition 4.14 (see section 2 of [Cor89] ). Let Ĉ be a quasistable curve. Consider a triple
(Ĉ,L,α), where L is a line bundle of degree g−1 and α ∶ L⊗2 → ωĈ a homomorphism satisfying
the following conditions:

1. L∣E = O(1) on each exceptional component of Ĉ.

2. α induces an isomorphism α̃ ∶ L⊗2
∣C → ωC , where C denotes the curve Ĉ without exceptional

components.

Then (L,α) is called a spin structure on Ĉ and (Ĉ,L,α) a spin curve.

If Ĉ is smooth, L is just a theta characteristic. Hence, this definition generalizes the notion of
theta characteristics to singular curves. Even better, it extends the classical result in theorem
4.6 to stable curves in the following sense. The map ϕ̄ ∶ Sg,n → Mg,n from above sending a
stable spin curve (Ĉ,L,α) to the stable model C of Ĉ (given by contracting all exceptional
components) is of degree 22g. In other words, we can find 22g “theta characteristics” (meaning
stable spin curves) lying over C. We will see that a stable spin curve over a stable curve C is
given by a theta characteristic on a partial normalization of C. Indeed, condition 2 in definition
4.14 means that L∣Cν

R
is a theta characteristic where Cν

R is the partial normalization of C at
R and R a subset of the nodes of C. Now, there is a certain number of acceptable ways (see
section 3 in [Cor89]) to blow up C to obtain a quasistable curve Ĉ that admits a spin structure.
This yields the count.

Example 4.15 ([Cor89], Example (3.1)). Recall the degeneration formulas for Hurwitz numbers.
They enabled the transition to tropical geometry. Given a ramified covering f ∶ C → D the
idea was to deform base and source curve simultaneously until the target curve becomes a
singular curve D0 ∶=D1 ∪D2 consisting of two smooth components D1 that meet in one node p.
Formalizing this means considering one parameter families of curves whose special fibre is D0.
What is the “right” special fibre in the spin case? Let us look at ϕ̄−1(D0) for possible candidates.
Suppose (D̂0, L) ∈ ϕ̄

−1(D0). Cornalba argues that in order for a spin structure on D0 to exist
one must insert an exceptional component E at the node. To see why this is the case suppose
there exists a line bundle L on D0 such that there is an isomorphism α ∶ L⊗2 → ωD0 , where ωD0

is the dualizing sheaf of D0. Then for i = 1,2 restricting α to the smooth component Di would
have to be an isomorphism as well. The restriction of ωD0 to Di has degree 2g(Di)− 2+ 1 since
the associated divisor is KDi + p (see pg.30 [Cav16]). But 2g(Di) − 1 is odd, a contradiction.
Hence, D̂ = D1 ∪ E ∪D2 such that for i = 1,2 the component Di meets E at node pi. A spin
structure on D̂ is a tuple (L,α) as in definition 4.14. Write L = (L∣D1

, L∣E , L∣D2
). By condition

1 we know L∣E = O(1) and condition 2 implies that L∣D1
and L∣D2

are theta characteristics on
D1 and D2 respectively.

In retrospect we see what Cornalba means by “acceptable” ways to blow up C. To be able to
take a root of the dualizing sheaf on each irreducible component we need the number of nodes
that are not blown up to be even (on each component). Thus, determining quasistable curves
in ϕ−1(C) that carry a spin structure gets quite easy: Choose an even number of nodes on each
irreducible component of C and blow up the remaining ones. The number of ways to do this is
best computed using the perspective of dual graphs (see next paragraph).

Definition 4.16 (see pg. 19 in [CMP20]). A one-parameter family of curves is a family of
(pointed) nodal curves π ∶ C →∆ over a regular, connected curve ∆ with a marked point, t0 ∈∆.
We denote by C0 the fibre over t0 and we will always assume that every fibre Ct for t ∈∆∖ {t0}
has the same dual graph. We shall call Ct the “generic” fibre.
A one-parameter family of stable spin curves is a triplet (C,L, α), where L is a line bundle and
α ∶ L⊗2 → ωπ a homomorphism such that for every t ∈∆ the fibre (Ct,L∣Ct

, α∣Ct
) is a stable spin

curve.
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4.3 Dual spin graphs

Just like dual graphs encode the combinatorial data of a stable curve, dual spin graphs encode the
combinatorial data of a stable spin curve. This discretization is best viewed from the perspective
of its stable model. A stable spin curve ĈR over a stable curve C is given by ([CMP20], section
3.1.):

1. a partial normalization Ĉν
R of C at a set of nodes R of C.

2. a theta characteristic L̂R on Ĉν
R .

The existence of L̂R forces each irreducible component Z of Ĉν
R to have only an even number

of nodes. Otherwise the restriction of the dualizing sheaf ωĈν
R

on Z would have odd degree
since

deg(ωZ) = 2 − 2g(Z) + n, where n = ∣R∣.

Let ΓC be the dual graph of C and denote by N the set of nodes. We provide an (informal)
dictionary between the algebraic operations above and corresponding operations on the dual
graph (see figure 4.3 for a visualization):

1. Blow up at a node r ∈ N ↔ Adding a genus 0 vertex on the edge dual to r.

2. Partial normalization at R ⊂ N ↔ Erasing edges dual to R.

We denote the graph obtained by removing edges dual to R by ΓC −R.

r ErC ĈR Ĉν
R

ΓC ΓĈR ΓC −R
vr

Figure 19: Illustration of the algebraic operations and their graph-theoretic counterpart where
R ∶= {r}

With this in mind we can rephrase the discussion around example 4.15 in the language of graphs:
The preimage ϕ−1(C) consists of quasistable curves ĈR such that the dual graph ΓC −R of Ĉν

R

is cyclic, i.e. ΓC − R is an element of the cycle space of ΓC − R denoted by CΓC−R ([CMP20],
section 1.4). Indeed, requiring the number of nodes that lie on each connected component of
Ĉν

R to be even implies that each vertex of ΓC −R has a even number of adjacent edges. This is
the case if and only if ΓC −R is cyclic. As promised, counting the number of stable spin curves
in ϕ−1(C) expressed in graph-theoretic language:
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Proposition 4.17 (Proposition 3.5. [Far12]). Let C ∈Mg and b ∶= b1(ΓC) be the Betti number
of the dual graph. Then the number of components of the zero-dimensional scheme ϕ−1(C) is
equal to

22g(ΓC)−2b∑
P

2b1(P )

A component corresponding to a cycle P of ΓC appears with multiplicity 2b−b1(P ).

Thus, we get a total of 22g(ΓC) spin structures counted with multiplicity. Since connected
components of Ĉν

R are in natural bijection with the vertices of the graph G/P obtained after
contracting the edges of the cycle P ∶= E(ΓC)∖R we write (following [CMP20]) the decomposition
into connected components of Ĉν

R as Ĉν
R = ⋃v∈V (G/P )Zv.

Definition 4.18 (Definition 3.2.1. [CMP20]). Let (ĈR, L̂R) be a stable n-pointed spin curve,
where C the stable model of ĈR and ĈR the quasistable curve associated to a set of nodes
R of C. Write ĈR = Ĉν

R ∪ ⋃p∈REr and Ĉν
R = ⋃v∈V (G/P )Zv the decomposition into connected

components of Ĉν
R. The dual spin graph of (ĈR, L̂R) is the spin graph (ΓC , P, s) defined as

follows:

• ΓC is the dual graph of C.

• P = E(ΓC) ∖RC , where RC ⊂ E(ΓC) corresponds to the set of nodes R.

• s(v) is the parity of h0(Zv, L̂R∣Zv
) for all v ∈ V (G/P ).

Dual spin graphs play a similar role for tropical spin Hurwitz covers as dual graphs do for
tropical Hurwitz covers (see remark 5.6).

4.4 Spin degeneration formulas

Hurwitz numbers and spin Hurwitz numbers are not so very different. An interesting feature
of Hurwitz numbers is their recursive structure. Do spin Hurwitz numbers exhibit a similar
behaviour? The theorem below answers this question.

Theorem 4.19 (Theorem 1.1. [LP13]). For d,m1, ...,mk as in 4.2

1. If h = h1 + h2 and p = (p1 + p2) mod 2 then for 0 ⩽ k0 ⩽ k

H
(h,p)
m1,...,mk =∑

m

∣m∣m!H
(h1,p1)
m1,...,mk0 ,m

H
(h2,p1)
m,mk0+1,...,mk

2. If h ⩾ 2 or if (h, p) = (1,+) then

H
(h,+)
m1,...,mk =∑

m

∣m∣m!H
(h−1,+)
m,m,m1,...,mk

where the sums are over all odd partitions m of d,

We have seen in theorem 4.12 that the parity of a theta characteristic is a deformation invariant,
i.e. it is constant in a family of spin curves as in definition 4.11. Thus, it is at least worth a
try to transfer the degeneration method to the spin case. This is exactly what Lee and Parker
do. They consider holomorphic maps between families of stable spin curves as in definition 4.16
and express both their parity and number in terms of the parity and number of maps into the
irreducible components of the special fibre of the target curve.
Below you find a sketch of the proof:
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• Step 0: Express the spin Hurwitz number (definition 4.9) in terms of relative Gromov
Witten moduli spaces.

• Step 1: Describe the relative moduli spaceMm,0 of maps f0 into a nodal curve D0.

• Step 2:: Identify maps inMm,0 as limit maps as the target curve D degenerates to D0.

• Step 3: Make the idea of simultaneously degenerating cover and base curve of a spin
Hurwitz cover concrete in terms of families of curves.

• Step 4: Transform theses into families of stable spin curves to keep track of their parity.

• Step 5: Pause to make some “Parity statements”.

• Step 6: Prove theorem 4.19.

For us this degeneration is a bridge towards tropical geometry. What we need to understand
is the structure of the “end product” of Lees and Parkers degeneration procedure. Hence, we
are going to add mpre detail to step 0, 1, 2 and 6. The concrete construction of the algebraic
families of stable spin curves, i.e. step 3,4 and 5, is of lesser interest to us. We direct the curious
reader to [LP13] for more details.

Step 0: Express the spin Hurwitz number in terms of relative Gromov Witten moduli spaces.
Working with relative Gromov Witten spaces is similar (not analogous) to working with y0 la-
belled maps instead of Hurwitz covers (as is done in [RC]) where we label the preimages of a
point. Isomorphisms of y0 labelled maps have to be isomorphisms of Hurwitz covers and pre-
serve the labelling. In our case Lee and Parker consider V -regular maps. These are ramified
coverings together with a marking of all ramification points. The advantage is that by imposing
“the right” conditions the automorphism group of a V -regular map can be made trivial (see
lemma 4.23). This simplifies future computations a lot.

Definition 4.20 ([LP13]). Let D be a smooth curve of genus h and let V = {q1, ..., qk} be a fixed
set of points on D. Given partitions m1, ...,mk of d, a degree d holomorphic map f ∶ C → D
from a (possibly disconnected) curve C is called V -regular with contact partitions m1, ...,mk if
for each i = 1, ..., k f−1(qi) consists of l(mi) points qij so that the ramification index of f at qij is

mi
j . We call the number j the label of qij .

Remark 4.21. In the setting of definition 4.20 we do not allow any (i.e. random) labelling of
the preimages of qi, but one that matches the prescribed ramification profile mi. Consider
mi = (1,2,2) and let x, y, z be the ramification points of f with order 1,2,2. An acceptable
labelling is qi1 ∶= x, q

i
3 ∶= y, q

i
2 ∶= z, whereas q

i
2 ∶= x, q

i
1 ∶= y, q

i
3 ∶= z is not allowed.
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1

3

2

1

3

2

m = (1,2,2)

Figure 20: The labelling on the right is acceptable, the one on the left is not.

Definition 4.22 ([Lee13]). Two V -regular maps (f,C;{qij}) and (f̃ , C̃;{q̃ij}) are isomorphic if

there is a biholomorphism σ ∶ C → C̃ with f̃ ○ σ = f and σ(qij) = q̃
i
j for all i, j.

The automorphism group Aut(f, V ) of a V -regular map (f,C;{qij}) consists of automorphisms

σ ∈ Aut(f) with σ(qij) = q
i
j for all i, j.

The relative Gromov Witten moduli space

M
V
χ,m1,...,mk(D,d), (2)

consists of isomorphism classes of V -regular maps (f,C;{qij}) as in definition 4.20 with Euler
characteristic χ ∶= χ(C).
Relating V -regular maps to spin Hurwitz covers allows us to express spin Hurwitz numbers in
terms of V -regular maps.

Lemma 4.23 ([Lee13], Lemma 1.1.).
Fix a genus h and partitions m1, ...,mk of an integer d.

1. If m1, ...,mk are all odd partitions, then

H
(h,p)
m1,...,mk =

1

∏
k
i=1m

i!
∑
(−1)p(f)

∣Aut(f, V )∣
,

where the sum goes over all (f,C;{qij}) ∈M
V
χ,m1,...,mk(D,d) (defined in (2).

2. If mi = (1d), then ∣Aut(f, V )∣ = 1.

Proof. Fix the discrete data h, p,m1, ...,mk. Let A be the set of isomorphism classes of V -regular
maps (f,C;{qij}) and B be the set of isomorphism classes of Hurwitz covers f . Consider the
map

π ∶ A→ B, (f,C;{qij})↦ f,

that simply forgets the contact marked points {qij} of f . We have ∣π−1(f)∣ =
∣Aut(f,V )∣∏k

i=1 m
i!

∣Aut(f)∣
(see [Lee13]) and thus

H
(h,p)
m1,...,mk =∑

f

(−1)p(f)

∣Aut(f)∣
=∑

f

(−1)p(f)

∣Aut(f, V )∣∏k
i=1m

i!
∣π−1(f)∣ =

1

∏
k
i=1m

i!
∑

(f,C;{qij})

(−1)p(f)

∣Aut(f, V )∣
.

35



For the second part, suppose mi = (1d) for some 1 ⩽ i ⩽ d, then qi is not a branch point of f .
Let B be set of branch points. We know that f ∶ C ∖ f−1(B) → D ∖B is a covering map and
σC ∖ f−1(B) → C ∖ f−1(B) satisfies f ○ σ = f . Hence, σ is a lift of f that fixes qi1, ..., q

i
d and by

the unique lifting property of coverings spaces (see Exercise 79. in [RC]) has to be the identity
on C ∖ f−1(B). Moreover, the set f−1(B) is finite forcing σ to be the identity on C.

Step 1: Description of Mm,0. Motivated by example 4.15 we analyse the structure of maps

into a quasi-stable curve D0. Fix discrete data d, h,χ,m1, ...,mk as definition 4.9 and consider
D0 =D1 ∪E ∪D2 of genus h such that for i = 1,2:

• D0 contains two nodes p1 and p2, such that Di meets E at node pi.

• Di is smooth with g(Di) = hi and h1 + h2 = h.

• E is an exceptional component.

Let mk+1 = mk+2 = mk+3 = (1d), m = (m1, ...,ml) be a partition of d and 1 ⩽ k0 ⩽ k. Consider
the product space

Pm =M
V1

χ1,mk+1,m1,...,mk0 ,m
(D1, d) ×M

Ve

χe,m,mk+2,m
(E,d) ×MV2

χ2,m,mk+3,mk0+1...,mk(D2, d)

V1 = {q
k+1, q1, ..., qk0 , p1}, Ve = {p

1, qk+2, p2}, V2 = {p
2, qk0+1, ..., qk, qk+3}

χ1 + χe + χ2 − 4l(m) = χ

Remark 4.24. For later use we call the first, second and third factors of Pm: M1
m,Me

m,M2
m.

It follows from Lemma 2.1 and from Lemma 2.2 in [Lee13] that a map (f1, fe, f2) ∈ Pm has the
following structure:

• f1, f2 are ramified at contact marked points qi and nodal points only.

• the domain of fe is a disjoint union of l(m) rational curves Ei, i.e. fe ∶ ⋃
l(m)
i=1 Ei → E,

where f∣Ei
has degree mi.

Figure 21 shows a cartoon of such a map.

C1

D2D1

C2

E

E3

E2

E1

p2p1

f1 f2fe

Figure 21: Sketch of a map into D0.

Remark 4.25. Marking three additional points qk+1, qk+2, qk+3 with prescribed ramification be-
haviour mk+1 = mk+2 = mk+3 = (1d) ensures that the automorphism group of each component
map is trivial (Lemma 4.23). In the following we will always do so. Hence, automorphism group
will not appear in future computations.
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By Lemma 2.2 [Lee13]) we have that

∣M
Ve

χe,m1,...,mk(E,d)∣ =
d!m!

∣m∣
.

Note, this number is in some sense artificial since forgetting contact marked points yields exactly
one map.
Matching ramification orders over the nodes ensure that we can glue the domains of f1 and fe
and of f2 and fe, respectively, together to obtain a map f ∶ C0 →D0. Denote byMm,0 the space
of such glued maps f = (f1, fe, f2) and discard the information about labelling above the nodes.
Thus,

Pm →Mm,0, (f1, fe, f2)↦ f

is a cover of degree m!2 (Lemma 2.3 [Lee13]). The factor m!2 appears because according to
remark 4.21 we have m! possibilities to label the ramification points above each node.

Step 2:Identify Mm,0 as space of limit maps. Why did we look at these maps in the first
place? They occur as limit maps of maps as the target curve degenerates to D0. Fix D0 as in
step 1 and construct a 1-parameter family of curves D → ∆ (with parameter r) as in section
4 of [Lee13] together with sections Qi that select k + 3 special points on each fibre such that
Qi(0) = qi for i = 1, ..., k + 3. The generic fibre Dr for r ≠ 0 is smooth and of genus h and the
special fibre is given by D0. For r ≠ 0 consider the moduli space

Mr ∶=M
Vr

χ,m1,...,mk+3(Dr, d) with Vr = {Q
1
(r), ...,Qk+3

(r)}.

Of course we can compute the spin Hurwitz number H
(h,p)
m1,...,mk by counting maps inMr for any

r ≠ 0 (lemma 4.23). What happens if we let r approach 0? To be concrete: We want to relate
the spacesMr as r → 0 toMm,0. In Lemma 3.1. ([Lee13]) Lee observes that

limr→0Mr ⊂⋃
m
Mm,0,

where the union is over all partitions m of d with Pm ≠ ∅ and limr→0Mr denotes the set of
limits of sequences of maps inMr as r → 0(for a justification of the existence of such limit maps
see [Lee13]). On the other hand, we can reconstruct all maps inMr by choosing f ∈Mm,0 and
smoothing the domain curve C0 ([Lee13]). Recall, for i = 1,2 the preimage of pi ∈ Di consists
of l(m) points xij . Each one is a node of C0 and can be smoothed in mj ways ([Lee13]). This
yields ∣m∣

°
smoothing over p1

⋅ ∣m∣
°

smoothing over p2

maps inMr. In total we have

Mr =⋃
m
⋃

f∈Mm,0

Zm,f,r for r ≠ 0,

where Zm,f,r (informally) denotes the set of maps in Mr having f ∈ Mm,0 as limit and

∣Zm,f,r ∣ = ∣m∣
2. For a more precise definition of Zm,f,r see [Lee13].

Step 3: Simultaneously degenerating cover and base curve. Fix f ∶ C0 → D0 ∈Mm,0. We are
ready to make the statement “f is the limit of maps into Dr” concrete. This means that we need,
in addition to the deformation ofD0 given byD, a deformation of C0. This construction is done in
Theorem 5.1. [LP13]. For each ζ ∈ Qm ∶= {ζ = (ζ

1
1 , ζ

2
1 ..., ζ

1
l(m), ζ

2
l(m)) with ζ1j

mj
= 1 and ζ2j

mj
= 1}

there is a 1-parameter family of quasistable curves Cζ → ∆ (with parameter s) together with a
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holomorphic map Fζ ∶ Cζ → D, such that the generic fibre Cζ,s for s ≠ 0 is smooth and the map
fζ,s = Fζ ∣Cζ,s is contained inMr (where s∣m∣ = r). The special fibre is given by C0 in the case m

is an odd partition of d and fζ,0 = f . If m is even the special fibre is a little bit more complicated
(see [LP13] if you are curious). However, we do not need to worry about that since we will see
later on when introducing spin structures on both families that the contributions of these maps
cancel out.
Note, the families Cζ are indexed by vectors ζ ∈ Qm. This accounts for the different possibilities
of smoothing the nodes of C0 and provides us with a way to get all maps in the set Zm,f,r. By
Lemma 5.2. ([LP13]) we have for s ≠ 0 and s∣m∣ = r that

Zm,f,r = ⋃
ζ∈Qm

{fζ,s}.

Step 4: Keep track of the parity. Now is the time for theta characteristics to enter the story. By
example 4.15 we know that a ‘spin structure onD0 is given by a collection of theta characteristics
on each of its smooth components. Thus, choose parities p1 and p2 with p = p1 + p2 mod 2. Lee
then endows D →∆ with a spin structure (N ,Φ) such that:

• for r ≠ 0 N restricts to a theta characteristic on Dr with a parity p.

• for i = 1,2 the restriction of N to the smooth component Di of the special fibre N∣Di
is a

theta characteristic of parity pi.

The tuple (D,N ,Φ) is a family of stable spin curves as in definition 4.16. The same can be done
for the family Cζ . We restrict to the case m is odd.

Theorem 4.26 ( Theorem 5.1. [LP13]). For f = (f1, fe, f2) ∈Mm,0 let Cζ → ∆ and Fζ ∶ Cζ → D

be as above. Then, there exists a line bundle Lζ over Cζ satisfying:

1. the restriction Lζ ∣Cζ,s is a theta characteristic on Cζ,s and the restriction map fζ,s = Fζ ∣Cζ,s
has the associated parity p(fζ,s) = p(Lζ ∣Cζ,s) since Lζ ∣Cζ,s = Lfζ,s .

2. the restriction to the special fibre is a collection of theta characteristics Lζ ∣C1
= Lf1 and

Lζ ∣C2
= Lf2 .

Step 5: Parity statements. A life saving fact about parities is the following.

Theorem 4.27 ([LP13], Theorem 4.2). Let f = (f1, fe, f2) ∈Mm,0 and r ≠ 0.

1. If m is odd, then p(fr) = p(f1) + p(f2) mod 2 for all fr ∈ Zm,f,r.

2. If m is even, then ∑fr∈Zm,f,r
(−1)p(f) = 0.

This is good news. For even m maps inMm,0 have component maps f1 and f2 that do not have
a well defined parity (see definition 4.9) since their branch divisor is not divisible by 2.
Step 6:Proof (theorem 4.19). We only prove part 1. Part 2 makes use of a different degeneration.
We refer to [LP13] for more details.
Luckily, spin Hurwitz numbers depend only on discrete data, i.e. the genus ofD, the parity of the
theta characteristic N and the ramification profile over the qi, but neither on the configuration
of the points nor on the curve D. This means we can replaceMV

χ,m1,...,mk(D,d) (step 0) by any
one of the spacesMr for r ≠ 0. By lemma 4.23 we have

H
(h,p)
m1,...,mk =H

(h,p)
m1,...,mk,(1d),(1d),(1d) =

1

d!3∏k
i=1m

i!
∑

fr∈Mr

(−1)p(fr) (3)

=
1

d!3∏k
i=1m

i!
∑
m
∑

f∈Mm,0

∑
fr∈Zm,f,r

(−1)p(fr) (4)
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where we use (1d)! = d! for the first equality andMr = ⋃m⋃f∈Mm,0
Zm,f,r for the second. Thanks

to theorem 4.27 the last sum vanishes whenever m is an even partition of d. Using ∣Zm,f,r ∣ = ∣m∣
2

we compute the spin Hurwitz number by counting degenerate coverings instead:

H
(h,p)
m1,...,mk =

1

d!3∏k
i=1m

i!
∑

m∶odd
∣m∣2 ∑

f=(f2,fe,f1)∈Mm,0

(−1)p(f1)+p(f2).

Recall

Pm →Mm,0, (f1, fe, f2)↦ f

is a cover of degree m!2. We can sum over disjoint tuples in Pm as well.

∑
f=(f2,fe,f1)∈Mm,0

(−1)p(f1)+p(f2) =
1

m!2
∑

f=(f2,fe,f1)∈Pm

(−1)p(f1)+p(f2)

=
1

m!2
∑

fe∈Me
m

( ∑
f1∈M1

m

(−1)p(f1))( ∑
f2∈M2

m

(−1)p(f2))

=
®

∣Me
m∣= d!m!

∣m∣

d!

m!∣m∣
( ∑
f1∈M1

m

(−1)p(f1))( ∑
f2∈M2

m

(−1)p(f2)),

where

M
1
m ∶=M

V1

χ1,(1d),m1,...,mk0 ,m
(D1, d),M

e
m ∶=M

Ve

χe,m,(1d),m(E,d),

M
2
m ∶=M

V2

χ2,m,(1d),mk0+1...,mk(D2, d).

To write ∑f1∈M1
m
(−1)p(f1) as contribution to the spin Hurwitz number H

(h1,p1)
mk+1,m1,...,mk0 ,m

we

need to correct by a factor of d!m!∏
k0
i=1m

i!, analogously for ∑f2∈M2
m
(−1)p(f2).

∑
f=(f2,fe,f1)∈Mm,0

(−1)p(f1)+p(f2) =
(d!)3m!∏k

i=1m
i!

∣m∣
H
(h1,p1)
m1,...,mk0 ,m

H
(h2,p1)
m,mk0+1,...,mk .

Substitute back in equation 3 and the result follows.
Lee and Parker use theorem 4.19 to compute the degree d = 3 and 4 spin Hurwitz numbers for
every genus.

Theorem 4.28 ( Proposition 7.1 [Lee13]). The degree 3 spin Hurwitz numbers are

H
(h,±)
(3)k = 3

2h−2
((−1)k2k+h−1 ± 1).

Theorem 4.29 ( Theorem 11.1. [LP13]). The degree 4 spin Hurwitz numbers are

H
(h,±)
(31)k = (3!)

2h−22k(±2k+h−1 + (−1)k).

We want to investigate these from the tropical point of view.
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5 Tropical spin Hurwitz numbers

This section develops a tropical counterpart of spin Hurwitz numbers. Similarly to tropical
Hurwitz numbers, tropical spin Hurwitz numbers are a weighted count of tropical spin covers,
i.e. tropical covers that, in addition, carry a certain parity.
In view of our previous approach to tropical geometry it is natural to iterate the degeneration
procedure from section 4.4 to get tropical covers as maps between the dual graphs of source and
target curve. We need to endow these with an additional structure that encodes the parity of the
“dual” covering maps. For degree 3 and 4 this can be done in a unique way, which implies that
we can keep the usual definition of multiplicity given in (3.13). For higher degrees, however, we
encounter additional problems, that have to do with the fact, that the process of tropicalization
“looses” a lot of information.

The uniqueness problem. Recall the connection between tropical curves and algebraic degenera-
tion: A tropical Hurwitz cover π ∶ Γ→ B can be interpreted as the natural graph theoretic map
between the dual graphs of source and target curve of an algebraic cover whose target curve is
a maximal stable degeneration. The multiplicity of π is designed to reflect the weighted count
of Hurwitz maps, i.e.

mult(π) =∑
f

1

∣Aut(f)∣
,

where the sum runs over isomorphism classes of maps that contribute to H
g

d
Ð→h
(m1, ...,mk)

and “degenerate” to π. The contribution of these maps to the spin Hurwitz number H
(h,p)
m1,...,mk ,

however, is

∑
f

(−1)p(f)

∣Aut(f)∣
.

This is a problem since the parity p(f) is in general not the same for all f , even if after
degeneration the domain curves have the same associated dual graphs. Therefore, we cannot
always assign a unique parity to π while keeping the original multiplicity. A tropical cover π
just encompasses the data of “too many” covering maps in the algebraic world.
But still, do we have cases where the usual multiplicity is good enough? And, if yes, how do we
track them down? Viewing tropical covers as shadows of degenerate Hurwitz covers allows us
to reduce the uniqueness problem to smaller entities: the analysis of spin Hurwitz covers that

contribute to numbers of the form H
(h,p)
m1,m2,m3 and their tropical counterpart under the duality

described in definition 3.23. We explain the case (h, p) = (0,0) =∶ (0,+) in detail before we turn
to a more general setting in subsection 5.1.1 and 5.1.2. Let π ∶ Γ → TP1 be a tropical Hurwitz
cover as in definition 3.20 of degree d with odd ramification only. Let v′ be a branch point of π
and for i = 1, ..., t let vi be a ramification point of Γ with π(vi) = v

′ whose ramification profile is
given by the collection of weights of ends/edges mapping to the end/edges adjacent to v′ (e.g.
as in figure 22 b)).
Locally, π is dual to an algebraic Hurwitz cover f ∶ C → P1 (e.g. as in figure 22 a)) with

• C =
t

⋃
i=1

Ci is the disjoint union of smooth curves Ci with g(Ci) = g(vi).

• f is a collection of Hurwitz covers f = (f1, ..., ft), such that fi counts towards the local
Hurwitz number of Γ at vi denoted by Hvi .
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• parity p(f) given by
t

∑
i=1

p(fi) mod 2 where p(fi) is as in definition 4.8 (specifying the

theta characteristic on the target curve is not necessary since P1 admits only one).

In other words f counts, as a Hurwitz cover, towards a disconnected Hurwitz number of the form

H t

∑
i=1

g(vi)
d
Ð→0
(m1,m2,m3) and, as spin Hurwitz cover, towards H

(0,+)
m1,m2,m3 , where for i = 1,2,3 the

partition mi is odd.
Globally, a degenerate Hurwitz cover f0 dual to π is a tuple of local Hurwitz covers f (with
appropriate identifications on source and target curves) whose parity is given by the sum of
local parities p(f). Asking whether the parity of f0 is uniquely determined by π, boils down
to asking whether the parities of these local Hurwitz covers f (and their components fi) are
unique. Figure 22 illustrates this duality.

3 v1

1

1

1

1

3

f

v3

v2

π

v′

1

0

0

3

1

1C1

C2

C3

a) b)

Figure 22: Illustration of the duality: the red numbers denote the genus of the corresponding
vertex, the black numbers are edge weights.

Lemma 5.1. Let f ∶ C → P1 be a Hurwitz map satisfying the discrete data (h, d,m1,m2,m3),
where mi is an odd partition of d for i = 1,2,3.

1. If g(C) = 0, then p(f) = 0.

2. If (h, d,m1,m2,m3) = (0,3, (3)3), then p(f) = 1.

3. If (h, d,m1,m2,m3) = (0,4, (3,1)3) and C is connected p(f) = 0, else p(f) = 1.

Proof. For case 1 recall that a curve of genus 0 has modulo equivalence only one theta charac-
teristic given by −P for any point P ∈ C. Since L̃f , the twisted pullback of −P along f is also
a theta characteristic we have p(f) = 0 as in example 4.2. Case 2 follows from example 4.10. If
d = 4, the Riemann Hurwitz formula yields χ(C) = 2. The curve C is either connected and of
genus 0 or the disjoint union of a rational curve C0 and an elliptic curve C1 ([LP13]). If the first
holds, we can conclude p(f) = 0 by case 1. Else, the map f is a pair of maps (f1, f2), where

• f1 satisfies the discrete data (0,1, (1)3) and by case 1 p(f1) = 0.

• f2 satisfies the discrete data (0,3, (3)3) and by case 2 p(f2) = 1.

In total we get p(f) = 1. This proves the claim.

Corollary 5.2. Let m = (3) or m = (3,1), π be a tropical 3-cycle covering of degree 3 or 4 with
odd edge weights only. Then for any families of Hurwitz covers F , F̃ (as in section 4.4) with
special fibres f0, f̃0 whose dual map is π we have p(f0) = p(f̃0).
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Proof. Let π be such a tropical Hurwitz cover with dual algebraic cover f0. By lemma 5.1 the
component maps of f0 denoted fv for v ∈ V (Γ) have a parity which is uniquely determined by
g(v). Indeed, if v is a genus 0 vertex, we have p(f) = 0. Else g(v) = 1 and v is 2-valent with
adjacent edges of weight 3. By lemma 5.1 case 2 and 3, p(f) = 1. In total, p(f0) is uniquely
determined by π.

5.1 Tropical spin covers and tropical spin Hurwitz numbers

The even case. Fix integers k, h, g, d and odd partitions m1, ...,mk of d satisfying the Riemann-
Hurwitz formula. We consider a maximally degenerate curve B of genus h together with a set
of k ends, our tropical target curve, and a parity function

sB ∶ V (B)→ Z/2Z, v ↦ 0.

Definition 5.3. Let π ∶ Γ→ B be a tropical Hurwitz covering of B (definition 3.20), such that the
edge weights of Γ are odd. An admissible parity function on Γ is a function s ∶ V (Γ) → Z/2Z,
such that for all v ∈ V (Γ) there exists a spin Hurwitz Cover f (with connected domain curve)
contributing to the local Hurwitz number Hv associated to v of the same parity, i.e. p(f) = s(v).

Definition 5.4. A tropical spin Hurwitz cover (π, s) of (B,sB) is a tropical Hurwitz cover π ∶
Γ→ B as in definition 3.20 together with an admissible parity function s on Γ. Its parity p(π, s)
is given by

p(π, s) ∶= ∑
v∈V (Γ)

s(v)mod2.

For each vertex v ∈ V (Γ) let Hv =H
g(v)

d(v)
ÐÐ→0

(nv
1, n

v
2, n

v
3) be its local Hurwitz number. Consider

a partition of M, the set of isomorphism classes of maps contributing to the connected spin

Hurwitz number H
(0,+,c)
nv
1 ,n

v
2 ,n

v
3
, into the spaces of maps with even and odd parity, i.e. M =M0∪M1,

and write

H
(0,+,c)
nv
1 ,n

v
2 ,n

v
3
= (H

(0,+,c)
nv
1 ,n

v
2 ,n

v
3
)
0
− (H

(0,+,c)
nv
1 ,n

v
2 ,n

v
3
)
1
, where

(H
(0,+,c)
nv
1 ,n

v
2 ,n

v
3
)
1
∶= ∑

f∈M1

1

∣Aut(f)∣
and (H

(0,+,c)
nv
1 ,n

v
2 ,n

v
3
)
0
∶= ∑

f∈M0

1

∣Aut(f)∣
.

Definition 5.5. Analogous to definition 3.20, we can define the local spin Hurwitz number

H(0,+)((π, s), v) ∶= (H
(0,+,c)
nv
1 ,n

v
2 ,n

v
3
)
s(v)

of a tropical spin Hurwitz cover (π, s) ∶ (Γ, s) → (B,sB)

at a fixed vertex v of Γ to be the number associated to the open cover ϕv from the star graph
with vertex v of genus g(v) and ends labelled by the partitions nv

1, n
v
2, n

v
3 to its 3-valent image.
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v

n1
v

n3
v

n2
v

ϕv

π(v)

´
¹¹¹¹¹¸
¹¹¹¹¹¶

´¹¹¹¹¹¸
¹¹¹¹¹¶

´
¹¹¹¹¹¸
¹¹¹¹¹¶

Note that the numbers H(0,+)((π, s), v) depend on the parity function on Γ.

Remark 5.6. The algebraic origin of definition 5.4 was essentially given in the preceding para-
graph: it is customized to encode the data of a classical spin Hurwitz number and allows for the
reconstruction of spin Hurwitz covers from it. In this context, note that requiring edge weights
to be odd is a realizability condition. It guarantees the existence of spin Hurwitz cover dual to
(π, s).

Definition 5.7. An isomorphism of tropical spin Hurwitz covers (π1, s) ∶ (Γ1, s1) → (B,sB) and
(π2, s2) ∶ (Γ2, s2)→ (B,sB) is an isomorphism ϕ ∶ Γ1 → Γ2 of tropical curves such that π1 = π2 ○ϕ
and s1(v1) = s2(ϕ(v1)) for all v1 ∈ V (Γ1).

The multiplicity of a tropical spin Hurwitz cover should account for the number of ways in which
it may be promoted to a degenerate spin Hurwitz cover of nodal curves with same local parities.

Definition 5.8. To a tropical spin Hurwitz cover (π, s) we assign the following multiplicity:

mult(π, s) ∶=
1

∣Aut(π, s)∣
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v).

Note that multiplicity depends on the parity function on Γ. We have all the ingredients we need
together and give the following:

Definition 5.9. Fix integers k, h, g, d and odd partitions m1, ...,mk of d satisfying the Riemann-
Hurwitz formula. Fix a target (B,sB) of genus h as above. The (even) tropical spin Hurwitz

number TH(h,+)
m1,...,mk is a weighted count of tropical spin Hurwitz covers (π, s) ∶ (Γ, s) → (B,sB)

as in definition 5.4:

TH(h,+)
m1,...,mk = ∑

(π,s)∈TS
(−1)p(π,s) ⋅mult(π, s),where

TS ∶= {(π, s) ∶ (Γ, s)→ (B,sB) ∶ ∏
e∈E(Γ)

ω(e) is odd.}.

The set TS is the set of relevant spin Hurwitz covers.

Remark 5.10. We wish to mention that our definition of p(π, s) is compatible with the parity
notion of tropical spin curves in Definition 2.4.2 ([CMP20]). The corresponding tropical spin
curve is given by (Γ, P, s) with P = ∅ and parity function s ∶ V (Γ/P ) = V (Γ) → Z/2Z, v ↦ s(v)
(the underlying graph is a spin graph as in definition 4.18). It is obvious that this is indeed a
tropical spin curve, since s satisfies the requirement, s(v) = 0 for a genus 0 vertex v, and P is
a cycle. Omitting P = ∅, we refer to (B,sB) and (Γ, s) as tropical spin curves and notice that
the target (B,sB) is even (Definition 2.1.1. [CMP20]).
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The odd case. As before fix integers k, h, g, d where h ⩾ 1 and odd partitions m1, ...,mk of
d satisfying the Riemann-Hurwitz formula. We consider a target curve B that is maximally
degenerate except for a 1-valent vertex v′ of genus 1 together with an odd parity function

sB ∶ V (B)→ Z/2Z, v ↦
⎧⎪⎪
⎨
⎪⎪⎩

0, g(v) = 0

1, g(v) = 1
.

We call such a curve almost maximally degenerate.

Remark 5.11. Note that in light of the degeneration formulas (theorem 4.19) an almost max-
imally degenerate base curve is the equivalent of a maximally degenerate one (for base curves
with odd theta characteristics) in the spin world.
The curve B is obtained from a maximally degenerate curve B′ by contracting the only cycle as
shown in figure 23 for a base curve of genus 1.

0 1

B′ B

00

v′
g(v′) = 1

Figure 23: Base curve B with parity function (in green) obtained by contracting the cycle in B′.

Definition 5.12. Let π ∶ Γ→ B be a tropical cover of B, such that the edge weights of Γ are odd
and the Riemann-Hurwitz condition is satisfied at each vertex. An admissible parity function
on Γ is a function s ∶ V (Γ)→ Z/2Z such that:

• s ∶ V (Γ) ∖ π−1(v′)→ Z/2Z is an admissible parity function on Γ ∖ π−1(v′),

• for v ∈ π−1(v′) there exists a spin Hurwitz Cover f (with connected domain curve) that

counts towards H
(1,−)
nv of the same parity, i.e. p(f) = s(v),

where v′ denotes the genus one vertex of B. We call the pair (π, s) a tropical spin Hurwitz cover
of (B,sB) of parity p(π, s) ∶= ∑v∈V (Γ) s(v)mod2. The notion of isomorphisms of tropical spin
Hurwitz covers is analogous to the one in 5.7.
For fixed vertex v ∈ V (Γ) we define the local spin Hurwitz number of v as in definition 5.5, if

v ∈ V (Γ)∖π−1(v′), and writeH(0,+)((π, s), v) in this case, and asH(1,−)((π, s), v) ∶= (H
(1,−,c)
nv )s(v)

else, where

H
(1,−,c)
nv = (H

(1,−,c)
nv )0 − (H

(1,−,c)
nv )1.

The multiplicity associated to (π, s) is given by mult(π, s) ∶=

1

∣Aut(π, s)∣
∏

e∈E(Γ)bounded
ω(e) ∏

v∈V (Γ)∖π−1(v′)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v) ∏

v∈π−1(v′)
nv!H(1,−)((π, s), v).

Definition 5.13. Fix integers k, h, g, d where h ⩾ 1 and odd partitions m1, ...,mk of d satisfying
the Riemann-Hurwitz formula. Fix a target (B,sB) of genus h as above. The (odd) tropical
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spin Hurwitz number TH(h,−)
m1,...,mk is a weighted count of tropical spin Hurwitz covers (π, s) as in

5.12:

TH(h,−)
m1,...,mk = ∑

(π,s)∈TS
(−1)p(π,s) ⋅mult(π, s),where

TS ∶= {(π, s) ∶ (Γ, s)→ (B,sB) ∶ ∏
e∈E(Γ)

ω(e) is odd.}.

The set TS is the set of relevant spin Hurwitz covers.

5.1.1 Degree 3 and 4 with base TP1 and TE

As a first step, we want to understand degree 3 or 4 spin Hurwitz covers of P1 or of an elliptic
curve E with even theta characteristic tropically. Restricting to the cases of degree 3 or 4 has
two advantages. An admissible parity function on the cover curve is unique and the multiplicity
coincides with the usual definition for tropical Hurwitz covers. Hence, we achieve a complete
combinatorial treatment of the counting problem 5.9.
For the remainder of this subsection we fix the tropical target curve B to be either the tropical
line, i.e. B = TP1, or a tropical elliptic curve, B = TE (definitions 3.17 and 3.16), and a parity
function

sB ∶ V (B)→ Z/2Z, v ↦ 0.

Next we determine the parity of a cover of (B,sB).

Lemma 5.14. Let (π, s) ∶ (Γ, s) → (B,sB) be a tropical spin Hurwitz cover of degree d ∈ {3,4}
of (B,sB), i.e. π is a 3-cycle covering of B = TP1 or B = TE such that the edge weights of Γ are
odd. Then an admissible parity function on Γ is unique and given by

s(v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, g(v) = 0

1, g(v) = 1
where

p(π) ∶= p(π, s) = ∑
v∈V (Γ)

s(v)mod 2

is the parity of π (equivalently of Γ). In particular, both a single edge and a single circle have
parity 0.

Proof. This follows directly from corollary 5.2.

An easy consequence is

Lemma 5.15. Let (π, s) ∶ (Γ, s) → (B,sB) be a tropical spin Hurwitz as in lemma 5.14. The
multiplicity mult(π, s) of (π, s) defined in 5.8 is just given by mult(π), where mult(π) is the
usual multiplicity of π considered as a tropical Hurwitz cover.

Proof. Since an admissible parity function Γ is unique, we have that Hv = H
(0,+)((π, s), v) for

each vertex v ∈ V (Γ). Hence, definition 3.21 and definition 5.8 agree.

Our goal is to count tropical spin Hurwitz covers of TP1 or TE. We need the following input
data: Fix positive integers k and h = 0 or h = 1 together with a choice of d = 3 or d = 4 with
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(the only) corresponding odd partitions m = (3) or m = (3,1) of d. The tropical spin Hurwitz

number TH(h,+)
mk for the discrete data (h, d,mk) simplifies to:

TH(h,+)
mk = ∑

π∈Mk

(−1)p(π) ⋅mult(π),where we set

Mk ∶= {(π, s) ∶ (Γ, s)→ (B,sB) ∶ ∏
e∈E(Γ)

ω(e) is odd.}

to be the set of relevant spin Hurwitz covers. Moreover, for any choice of (h, d,mk) we implicitly
require g(Γ) to satisfy the Riemann-Hurwitz formula.

Example 5.16. Figure 5.16 illustrates the computation of TH(0,+)(3)3 = −
1
3 and TH(0,+)(3)4 =

1
3 +

2
3 = 1.

k = 3

k = 4

p(h)h mult(h)

3 31 1
1
3

3 31 1

0 0 33

1

1

1

1 + 1 mod 2 = 0

0 + 0mod2 = 0

3 ⋅ 13 ⋅
1
33

1
3! ⋅ 2

2

Figure 24: Tropical spin curves with parity function in green that contribute to TH(0,+)(3)3 =
−1
3

and TH(0,+)(3)4 =
1
3 +

2
3 = 1.

We have a count analogous to the one in [LP13] in the tropical world.

Proposition 5.17. For k ∈ N we have TH(0,+)(3)k =
1
9((−1)

k2k−1 + 1).

Proof. We know that any tropical Hurwitz spin cover π ∶ (Γ, s)→ (TP1, sP1) ∈Mk (which counts
with non-zero multiplicity) is an arbitrary combination of the two building blocks, double Wiener
and 2-valent genus 1 vertices (see example 3.15) such that resulting graph has k−2 inner vertices.
In particular, genus 0 vertices occur in pairs only. First, let us analyse the parity of such a cover.
We claim:

p(π) = k mod 2 for k > 3.

Indeed, by definition, we have p(π) = ∑
v∈V (Γ)

p(v)mod 2 = ∣{v ∶ g(v) = 1}∣mod 2. Since Γ has k − 2

vertices we obtain:

k − 2
±

=k mod 2

= ∣{v ∶ g(v) = 1}∣ + ∣{v ∶ g(v) = 0}∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 mod 2

.
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Thus, k is even if and only if the right hand side of the equation above is. This, on the other
hand, is the case, if and only if ∣{v ∶ g(v) = 1}∣ is even, i.e. p(π) = 0 mod 2. This proves the
claim.
Note that this implies that modulo sign the degree 3 spin Hurwitz number is equal to the usual
Hurwitz number. Therefore, it suffices to show that

TH
g

3
Ð→0
((3)k) = (−1)k ⋅

1

9
((−1)k2k−1 + 1) =

1

9
(2k−1 + (−1)k)

holds. Next, we look at ways to obtain a tropical cover π ∈ Mk
3 from a cover π̃ ∶ Γ̃ → TP1 in

Mk−1. Label the vertices of Γ̃ from 1 to k − 1. If vertex k − 1 has genus 1, we have a choice to
either attach an additional genus 1 vertex with an end of weight 3 to vertex k − 1 or to split the
end of weight 3 into 3 strands of weight 1. If vertex k − 1 of Γ̃ has genus 0, we can only attach.

attach

Γ̃ Γ

attach

split

1

21

2

1

1

1

2

2

2 3

3

3

Figure 25: Parity, edge weights and ends are omitted to emphasize the structure of the recursion.
Vertex labels are drawn in blue.

We obtain all degree 3 covers that contribute to TH(0,+)(3)k from covers that contribute to TH(0,+)(3)k−1

in this way: For k ⩾ 3 we have Mk ∶=M
1
k ∪M

2
k , where

M1
k ∶= {h ∶ Γ→ TP1

∶ vertex k has genus 1 } and M2
k ∶= {h ∶ Γ→ TP1

∶ vertex k has genus 0 }.

In particular, we see ∣M1
k ∣ = ∣Mk−1∣ since attaching a genus 1 vertex is always possible, and

∣M2
k ∣ = ∣M

1
k−1∣.

We have good feeling how the recursion works on the structure side, we need to analyse how the
multiplicity is affected. Start with a cover π ∈ M1

k . Then there exists a cover Γ̃ ∈ Mk−1,
4 such

that Γ is obtained from Γ̃ by attaching a genus 1 vertex. Hence, we have

mult(Γ) =mult(Γ̃) ⋅ 3
®

edge contribution

⋅
(3 − 1)(3 − 2)

3!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vertex contribution

=mult(Γ̃).

3We omit s to keep notation shorter.
4We use the base curve Γ̃, when referring to the tropical cover π̃ ∶ Γ̃→ TP1 to keep notation shorter.
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Otherwise, let Γ ∈M2
k be obtained from Γ̃ ∈M1

k−1 by the splitting procedure, then

mult(Γ) =
1

2
mult(Γ̃) ⋅ 2 ⋅ 2

= 2mult(Γ̃).

The factor 1
2 accounts for the new double Wiener and the two factors 2 are contributions from

the new genus 0 vertices.
We are now ready to prove proposition 5.17, i.e.

TH
g

3
Ð→0
((3)k) =

1

9
(2k−1 + (−1)k) (5)

holds. Figure 5.16 shows (5) for k = 3 and k = 4. Let k ∈ N and suppose that (5) holds for all
k′ < k. Then

TH
g

3
Ð→0
((3)k) = ∑

Γ∈Mk

mult(Γ) = ∑
Γ∈M1

k

mult(Γ) + ∑
Γ∈M2

k

mult(Γ)

= ∑

Γ̃∈Mk−1

mult(Γ̃) + ∑

Γ̃∈M1
k−1

2mult(Γ̃)

= ∑

Γ̃∈Mk−1

mult(Γ̃) + ∑
Γ′∈Mk−2

2mult(Γ′)

= TH
k−3

3
Ð→0
((3)k−1) + 2TH

k−4
3
Ð→0
((3)k−2)

=
1

9
(2k−2 + (−1)k−1) +

2

9
(2k−3 + (−1)k−2)

=
1

9
(2 ⋅ 2k−2 + (−1)(−1)k−2 + 2 ⋅ (−1)k−2)

=
1

9
(2k−1 + (−1)k).

Proposition 5.17 follows by induction.

Proposition 5.18. For k ∈ N we have TH(1,+)(3)k = (−1)
k2k + 1.

Proof. The case k = 0 is shown in figure 26. Let k ⩾ 1. We count tropical spin Hurwitz coverings
of degree 3 and genus k + 1 of a tropical elliptic curve TE with k labelled vertices, v′1, ..., v

′
k, by

counting coverings of TP1 obtained after cutting an edge.

Cutting procedure. For (π, s) relevant to TH(1,+)
(3)k

, consider the labelling of the underlying curve

Γ induced by the labelling of TE, i.e. vi ∶= π−1(v′i) for i = 1, ..., k. Note that there is no ambiguity
since π−1(v′i) contains exactly one vertex. Cut the edge(s) connecting vk and v1 (see figure 27
for reference). The straightened curve Γ̃ has either

• two ends of weight 3 (type 1).

• two tines 3 ends of weight 1 (type 2).

We interpret Γ̃ as a tropical spin Hurwitz cover of TP1 with ramification profile (3) or (1,1,1)
over ±∞ depending on whether Γ̃ is of type 1 or 2. Following this procedure we obtain all degree

3 covers, that contribute to TH(0,+)
(3)k+2

(denote their set by M1) and TH(0,+)
(3)k,(13)2

(denote their set

by M2), respectively. Hence, cutting defines a surjection c ∶ Mk → M1 ∪M2. In fact, c is also
injective with inverse given by the unique possibility of gluing the ends over ±∞.
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How does the multiplicity of a cover change under the cutting procedure? Graphs of type 1
loose an edge of weight 3. Thus we have mult(Γ̃) = 1

3mult(Γ). For graphs of type 2 we replace

a double Wiener by two balanced double forks. This yields mult(Γ̃) = 1
3!mult(Γ). In total

TH(1,+)
(3)k

= 3TH(0,+)
(3)k+2

+ 3!TH(0,+)
(3)k,(13)2

= 3TH(0,+)
(3)k+2

+ 3!TH(0,+)
(3)k

= 3
−1

9
((−1)k+12k+1 − 1) + 3!

−1

9
((−1)k−12k−1 − 1)

= (−1)k2k + 1

where we implicitly used that the parity of a cover remains unaffected by the cutting procedure.

3
1

1

1

1

1

1
1

1

1

11

11

11

1
3!1

1
2

1
3

Figure 26: Computation of TH(1,+)(1,1,1) = 2

cut

v1

v3

v2

v1

v1

v1

v2

v2

v2 v3

v3

v3

v1 v2 v3

v1

v3

v2

v1

v3
v2

v1

v3v2

Type 1

Type 2

Figure 27: Graphs obtained after cutting all tropical degree 3 coverings of TE with k = 3 branch
points along the edge v3 − v1.

Proposition 5.19. For degree 4 spin tropical Hurwitz numbers with base TP1 and k ∈ N we have

the equality TH(0,+)(31)k =
−1
3⋅3!((−1)

k−12k−1 − 4k−1).
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k = 0

p(π, s)(π, s) mult(π, s)

1
4!1

1
0

1

1

3

k = 2 1 0

1
3

k = 3

p(π)
π

mult(π)

1
3

0

1 10

3 31

1

1

3

1

3

1

0

k = 4

p(π)π mult(π)

1
3

0 0 33
1

1
1

0

0 2
3

1 10 0

3 31 13

1

1 10 0
1

p(π)π mult(π)

3

1

1

33
1

0 1 1

03

1

1
3

3
1

1 1

1

1

1

0

0

1
3

3
0 2

0
3

1

1

33

1 0
0 3

Figure 28: Tropical spin covers that count towards TH(0,+)(31)k for k = 0,2,3,4.

We see:

TH(0,+)(31)0 =
1

4!
, TH(0,+)(31)2 =

1

3
, TH(0,+)(31)3 = 1 −

1

3
=
2

3
and TH(0,+)(31)4 =

1

3
+
2

3
+ 3 − 1 − 1 + 2 = 4.

Proof. We prove the statement by induction on the number of branch points k. Proposition 5.19

holds for k ⩽ 4 (see figure 28 for k ≠ 1). If k = 1, TH(0,+)(31)1 = 0 is obvious since M1 = ∅. Let k > 5

and suppose proposition 5.19 holds for all k̃ < k. Let us analyse the construction of a tropical

spin cover that contributes to TH(0,+)(31)k : Start with two strands over −∞, one of weight 3 and

one of weight 1. There are three possibilities to continue (since joining 2 strands of weight 1
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creates a vertex of multiplicity 0):

1. Join both strands to form a butterfly vertex of genus 0.

2. Create a genus 1 vertex on the strand of weight 3.

3. Split the strand of weight 3.

33

1 1

33 1a)

b)
3

1

1

1

1

1

11

Figure 29: a) shows possibility 1 on the left, 2 on the right and b) possibility 3.

Note, choosing either possibility 1 or 2 leads us back to the starting position, one strand of
weight 3 and one of weight 1: Thus, all possibilities to complete this construction are given by

gluing the source curve Γ̃ of a tropical spin Hurwitz cover (π̃, s̃) that counts towards TH(0,+)(31)k−1 .

Denote by π ∶ (Γ, s)→ TP1 the cover obtained in this way. We have:

p(π) = p(π̃) and mult(π) = 3mult(π̃) for possibility 1 and

p(π) = (1 + p(π̃)) mod 2 and mult(π) =
1

3
⋅ 3 ⋅mult(π̃) for possibility 2,

since gluing a genus 0 vertex to Γ̃ (possibility 1) creates a bounded edge of weight 3, but leaves
the parity unchanged. For possibility 2 we have to take into account that, in addition to the
edge of weight 3, a vertex of genus 1 changes the parity and has weight 1

3 .
Choosing possibility 3 leaves us with 4 strands of weight 1. Joining is the only option. Note
that joining only two creates a vertex of multiplicity 0:

3

1

1

1

1

1

1

1

v

1

Thus, we are forced to join exactly three, which puts us back to our starting point. Like before
all possibilities to complete this construction are given by gluing the source curve Γ̃ of a tropical

spin Hurwitz cover (π̃, s̃) that counts towards TH(0,+)(31)k−2 . Denote by π ∶ (Γ, s) → TP1 the cover

obtained in this way. The process of splitting the strand of weight 3 and joining three strands
of weight 1 only creates genus 0 vertices. Thus, we have p(π) = p(π̃). To compute mult(π) we
have to distinguish between two cases shown below.
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3

1

1

1

1

1

1

3
1

Case 2 ∶

Case 1 ∶
3 3

1

1

1

1

1

We obtain

mult(π) =
3 ⋅ 22

3!
mult(π̃) in case 1 and mult(π) =

3 ⋅ 22

2
mult(π̃)in case 2,

where the factor of 1
2 ( 1

3!) comes from the single (double) Wiener. In total, we have

TH(0,+)
(31)k

= 3TH(0,+)
(31)k−1

− TH(0,+)
(31)k−1

+ 2TH(0,+)
(31)k−2

+ 2 ⋅ 3TH(0,+)
(31)k−2

= 2TH(0,+)
(31)k−1

+ 8TH(0,+)
(31)k−2

=
−1

3 ⋅ 3!
(2((−1)k−22k−2 − 4k−2) + 8((−1)k−32k−3 − 4k−3))

=
−1

3 ⋅ 3!
((−1)k−22k−1 + 2(−1)k−3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−2(−1)k−2

−24k−2 − 24k−2)

=
−1

3 ⋅ 3!
((−1)k−12k−1 − 4k−1).

Proposition 5.20. For degree 4 spin tropical Hurwitz numbers with base TE and k ∈ N we have

the equality TH(1,+)(31)k = (−1)
k2k + 4k.

Proof. The strategy of proof is analogous to the one of proposition 5.18. We label the vertices of

TE by v′1, ..., v
′
k. For each (π, s) relevant to TH(1,+)

(31)k
, consider the curve Γ̃ obtained after cutting

the edge(s) connecting π−1(v′k) and π−1(v′1). Then Γ̃ has

• two ends of weight 3 and 1 (type 1).

• four ends of weight 1 (type 2).

We interpret Γ̃ as a tropical spin Hurwitz cover of TP1 with ramification profile (31) or (1111)
over ±∞ depending on whether Γ̃ is of type 1 or 2. This procedure yields all degree 4 covers

that contribute to TH(0,+)
(31)k+2

(denote their set by M1) and TH(0,+)
(31)k,(14)2

(denote their set by

M2), respectively. Hence, cutting defines a surjection c ∶ Mk → M1 ∪M2. However, c is only
injective when restricted to M1. On M2 c is 2-to-1. Indeed, for each Γ̃ ∈ M2 we have exactly
two possibilities of gluing the ends over ±∞ (figure 30) and thus creating either a single or
a double Wiener. The multiplicity changes accordingly. If Γ̃ ∶= c(Γ) ∈ M1, then mult(Γ̃) =

52



1
3mult(Γ). If Γ̃ ∶= c(Γ) ∈M2, we either replace a double Wiener by two balanced double forks,

i.e. mult(Γ̃) = 1
3!mult(Γ), or we replace a single Wiener by two balanced double forks, hence

mult(Γ̃) = 1
33!mult(Γ). In total

TH(1,+)
(31)k

= 3TH(0,+)
(31)k+2

+ (3 + 1)3!TH(0,+)
(3)k,(14)2

= 3TH(0,+)
(31)k+2

+ 4!TH(0,+)
(31)k

= 3
−1

3 ⋅ 3!
((−1)k+12k+1 − 4k+1) + 4!

−1

3 ⋅ 3!
((−1)k−12k−1 − 4k−1)

=
1

3!
(−1)k+22k+1 −

1

3!
4k+1 +

2

3
(−1)k2k −

1

3
4k

=
1

3
(−1)k2k −

2

3
4k +

2

3
(−1)k2k −

1

3
4k

= (−1)k2k + 4k

where we implicitly used that the parity of a cover remains unaffected by the cutting procedure.

1

1

1

1

1

1

1

1

1

a) b)

Figure 30: Two ways to glue ends of a curve Γ̃ ∈M2.

5.1.2 Degree 3 with base of arbitrary genus

We enrich the results from the previous subsection by allowing a base curve of arbitrary genus
for the case of degree 3. Fix positive integers k and h. We consider a maximally degenerate
curve B of genus h together with a set of k ends and parity function

sB ∶ V (B)→ Z/2Z, v ↦ 0.

Example 5.21. Two possible base curves of genus 2.

a) b)
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Determining coverings of a curve B of arbitrary genus with a specified ramification behaviour
is not easy. The degeneration perspective offers a structured way to reconstruct such a cover Γ
from looking at all possible local Hurwitz numbers.

Lemma 5.22. All non-zero local Hurwitz numbers of a Hurwitz cover π ∶ Γ→ B of degree 3 with
odd edge weights only, where B is a curve of arbitrary genus, are listed below.

33 g = 1

3

3
1

1

3

(1)

(2)

11

1

(3)

Hv =
1
3

Hv =
1
3

Hv = 1

Figure 31: Vertices with corresponding local Hurwitz numbers.

Hence, we have that

mult(π) =
1

∣Aut(Γ)∣
∏

e∈E(Γ)bounded
ω(e)

1

3

∣{v∶g(v)=1}∣
2I ,

where I is the set of vertices as in figure 31 (2).

Proof. For ṽ ∈ V (B) consider the local open cover πṽ ∶ Γṽ → Bṽ where Bṽ (respectively Γṽ) is the
star graph (respectively the possibly disjoint union of star graphs) obtained by cutting the edges
adjacent to ṽ (adjacent to vertices v ∈ π−1(ṽ)). Since we require edge weights of Γ to be odd πṽ
is dual to a Hurwitz cover f ∶ C → P1 that contributes to one of the following (possibly discon-
nected) Hurwitz numbers whose values can be computed by counting monodromy representation:
H●

1
3
Ð→0
((3)3) = 1

3 , H
●
0

3
Ð→0
((3)2, (1,1,1)) = 1

3 , H
●
1

3
Ð→0
((1,1,1)2, (3)) = 0 and H●

1
3
Ð→0
((1,1,1)3) = 1

3! .

If f contributes to one of the first two, C is connected and Γṽ is as in figure 31 (1) − (2) . If f
contributes to H●

1
3
Ð→0
((1,1,1)3) a computation of the Euler characteristic χ(C) = 6 yields that

C is a disjoint union of three rational curves (Lemma 7.2. [Lee13]). Hence, Γṽ is a disjoint union
of three (open) tropical curves as in figure 31 (3).
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11

1

11

1

11

1

πṽ

Γṽ

Bṽ

The statement about the multiplicity follows from multiplying the local Hurwitz numbers with
the automorphisms of the three local partitions, i.e. 1 for the first and third and 3! for the
second number, and substituting in definition 5.8.

Lemma 5.23. Let (π, s) ∶ Γ → B be a tropical spin Hurwitz cover of degree 3 of (B,sB), i.e. π
is as in lemma 5.22. Then there exists only one admissible parity function on Γ given by

s(v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, g(v) = 0

1, g(v) = 1
with

p(π, s) = ∑
v∈V (Γ)

s(v)mod2

and thus mult(π, s) =mult(π) where mult(π) is the multiplicity of π given in lemma 5.22.

Proof. The statement about the parity follows from the analogous statement for a cover of TP1

and mult(π, s) =mult(π) is a direct consequence.

Proposition 5.24. For k, h ∈ N we have TH(h,+)(3)k = 3
2h−2((−1)k2k+h−1 + 1).

As usual, we choose the genus g of the source curve such that the Riemann-Hurwitz formula is
satisfies, i.e. g = 3h + k − 2. The proof will be a double induction on h and k. We do the base
case separately:

Proposition 5.25. The tropical spin Hurwitz numbers counting covers with base of genus 2 and

k almost simple ramifications satisfy: TH(2,+)(3)k = 9((−1)
k2k+1 + 1).

The proof is similar to the one of proposition 5.18. We want to cut the target curve B (see figure
32) along the central edge and count covers of elliptic curves instead. Relating the multiplicities
of the cut covers to the glued one is more involved since the automorphism group of the cover
can be more complicated. For this reason we introduce a labelling and count labelled covers
instead.
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Proof. We construct a tropical analogue of the algebraic degeneration by a simple cutting pro-

cedure and prove a tropical degeneration formula for the numbers TH(2,+)(3)k :

TH(2,+)(3)k = 3!TH
(1,+)
(3)k−1TH

(1,+)
(3)1 + 3TH

(1,+)
(3)k TH(1,+)(3)2 for k > 0.

TH(2,+)(3)0 = 3!TH
(1,+)
(3)0 TH(1,+)(3)0 + 3TH

(1,+)
(3)1 TH(1,+)(3)1 for k = 0.

The results from subsection 5.1.1 then yield proposition 5.25.
1. Labelling. We consider the following labelled base curves: If k = 0, the curve B is a maximally
degenerate genus 2 curve as in figure 32 a). If k ⩾ 1, we require the k ends to be distributed as
in figure 32 b).

a) b)

v′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k − 1

v′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e′

Figure 32: Labelled base curve of genus 2.

Let v′ ∈ e′ be a point on the central edge. For a degree 3 spin Hurwitz cover (π, s) ∶ (Γ, s) →
(B,sB) (Γ is of genus k+4 ) we consider the cover (πl, sl), where the preimages of v′ are labelled.
Let m be the partition of 3 that corresponds to π−1(e′). We have two possible cases:

1. If m = (3), labelled and unlabelled coverings are in one-to-one correspondence.

2. If m = (1,1,1), an unlabelled cover (π, s) yields
∣Aut(1,1,1)∣
∣Aut(G)∣ non-isomorphic labelled ones

where G ∶= Aut(π, s)/Aut(πl, sl) is the quotient group and (πl, sl) fixed.

If we count labelled covers instead of unlabelled ones, we have to divide by the number of

labellings each cover (π, s) induces, i.e. by
∣Aut(1,1,1)∣
∣Aut(G)∣ , if m = (1,1,1), and by 1, if m = (3):

TH(2,+)(3)k = ∑
(π,s)
(−1)p(π,s)mult(π, s)

= ∑
(π,s)
(−1)p(π,s)

1

∣Aut(π, s)∣
∏

e∈E(Γ)
ω(e) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)

= ∑
(πl,sl)

m=(1,1,1)

(−1)p(π
l,sl)

∣Aut(1,1,1)∣∣Aut(πl, sl)∣
∏

e∈E(Γl)
ω(e) ∏

v∈V (Γl)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)

+ ∑
(πl,sl)
m=(3)

(−1)p(π
l,sl) 1

∣Aut(πl, sl)∣
∏

e∈E(Γl)
ω(e) ∏

v∈V (Γl)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v),

where the product ∏
e∈E(Γ)

ω(e) goes only over bounded edges and p(πl, sl) = p(π, s) since labelling

does not affect the parity function. Anticipating the cutting procedure we rearrange the factors
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as follows: Factors that contribute to the left part of Γl (to the right part, respectively) get a
subscript 1 (respectively 2)(see figure 33).

TH(2,+)(3)k = ∑
(πl,sl)

m=(1,1,1)

1

∣Aut(1,1,1)∣ ⋅ ∣Aut(πl, sl)∣
⋅

(−1)
∑v∈V (Γl

1
)
sl(v)

∏
e∈E(Γl

1)bounded
ω(e) ∏

v∈V (Γl
1)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)⋅

(−1)
∑v∈V (Γl

2
)
sl(v)

∏
e∈E(Γl

2)bounded
ω(e) ∏

v∈V (Γl
2)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)+

∑
(πl,sl)
m=(3)

3

∣Aut(πl, sl)∣
(−1)

∑v∈V (Γl
1
)
sl(v)

∏
e∈E(Γl

1)bounded
ω(e) ∏

v∈V (Γl
1)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)⋅

(−1)
∑v∈V (Γl

2
)
sl(v)

∏
e∈E(Γl

2)bounded
ω(e) ∏

v∈V (Γl
2)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v),

where we used that p(πl, sl) = ∑v∈V (Γl) s
l(v) mod 2 and thus

(−1)p(π
l,sl)
= (−1)

∑v∈V (Γl
1
)
sl(v)
⋅ (−1)

∑v∈V (Γl
2
)
sl(v)

.

The factor 3 in line 4 accounts for the bounded edge of weight 3 that connects Γl
1 and Γl

2.

2. Cutting procedure. Cutting a cover (πl, sl) at v′ and (πl)
−1
(v′) creates a pair

[(πl
1, s

l
1) ∶ (Γ

l
1, s

l
1)→ (B1, sB,1), (π

l
2, s

l
2) ∶ (Γ

l
2, s

l
2)→ (B2, sB,2)]

of covers of TE where the labelling over the newly created ends is the one inherited from (πl, sl)
(figure 33) and the parity function on Γl

i is just the restriction of sl to V (Γl
i) for i = 1,2. In fact,

we have a bijection between covers (πl, sl) and pairs of covers [(πl
1, s

l
1), (π

l
2, s

l
2)] with additional

labelling that count towards

• Case k > 0: TH(1,+)(3)k and TH(1,+)(3)2 , if m = (3), and towards TH(1,+)(3)k−1,(1,1,1) and TH(1,+)(3)1,(1,1,1),

if m = (1,1,1).

• Case k = 0: TH(1,+)(3) and TH(1,+)(3) , if m = (3), and towards TH(1,+)(1,1,1) and TH(1,+)(1,1,1), if m =

(1,1,1).

The bijective correspondence is clear for m = (3) since gluing two covers along a single edge
is unique irrespective of the labelling. If m = (1,1,1), we require πl

1 and πl
2 to be glued along

matching labels (figure 34), which guarantees uniqueness in this case.
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v′

1

3

2

(πl, sl)

3

3
3

3

3

1

1

1

1
0 0

0

0

0
0

0

cut

0

0

0

0

0

v′

v′

1

2

3

3

1

1

0

1

3

2

3

3 10

3

(πl
1, s

l
1)

(πl
2, s

l
2)

Γl
1

Γl
2

B1 B2

Figure 33: Cutting procedure for m = (1,1,1) with labelling in blue.

1 1

1

2

3

1

2

3

1

1(πl
1, s

l
1)

(πl
2, s

l
2)

Figure 34: Gluing of two labelled spin Hurwitz covers (case k = 0).

3. Relating multiplicities. The bijection justifies summing over pairs [(πl
1, s

l
1), (π

l
2, s

l
2)] instead.

Moreover, we have ∣Aut(πl, sl)∣ = ∣Aut(πl
1, s

l
1)∣ ⋅ ∣Aut(π

l
2, s

l
2)∣ since the labelling makes edges in

π−1(e′) distinguishable. Recognizing

(−1)∑v∈V (Γi)s(v) = (−1)p(π
l
i,s

l
i) for i = 1,2

yields:

TH(2,+)(3)k = ∑
[(πl

1,s
l
1),(π

l
2,s

l
2)]

m=(1,1,1)

1

3!
⋅
(−1)p(π

l
1,s

l
1)

∣Aut(πl
1, s

l
1)∣

∏
e∈E(Γl

1)
ω(e) ∏

v∈V (Γl
1)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)⋅

(−1)p(π
l
2,s

l
2)

∣Aut(πl
2, s

l
2)∣

∏
e∈E(Γl

2)
ω(e) ∏

v∈V (Γl
2)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)+ (A)

∑
[(πl

1,s
l
1),(π

l
2,s

l
2)]

m=(3)

3 ⋅
(−1)p(π

l
1,s

l
1)

∣Aut(πl
1, s

l
1)∣

∏
e∈E(Γl

1)
ω(e) ∏

v∈V (Γl
1)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)⋅

(−1)p(π
l
2,s

l
2)

∣Aut(πl
2, s

l
2)∣

∏
e∈E(Γl

2)
ω(e) ∏

v∈V (Γl
2)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v),
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where products of the type ∏
e∈E(Γ)

ω(e) go over bounded edges only. We rearrange equation (A)

to sum over p(πl
1, s

l
1), respectively (π

l
2, s

l
2), separately and get

1

3!
⋅ ( ∑
(πl

1,s
l
1)

m=(1,1,1)

(−1)p(π
l
1,s

l
1)

∣Aut(πl
1, s

l
1)∣

∏
e∈E(Γl

1)
ω(e) ∏

v∈V (Γl
1)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=3!TH(1,+)

(3)k−1,(1,1,1)
(3!TH(1,+)

(1,1,1)
for k = 0)

)⋅

( ∑
(πl

2,s
l
2)

m=(1,1,1)

(−1)p(π
l
2,s

l
2)

∣Aut(πl
2, s

l
2)∣

∏
e∈E(Γl

2)
ω(e) ∏

v∈V (Γl
2)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=3!TH(1,+)

(3),(1,1,1)
(3!TH(1,+)

(1,1,1)
for k = 0)

)

for the first summand in equation (A) and

3 ⋅ ( ∑
(πl

1,s
l
1)

m=(3)

(−1)p(π
l
1,s

l
1)

∣Aut(πl
1, s

l
1)∣

∏
e∈E(Γl

1)
ω(e) ∏

v∈V (Γl
1)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=TH(1,+)

(3)k
(TH(1,+)

(3)
for k = 0)

)⋅

( ∑
(πl

2,s
l
2)

m=(3)

(−1)p(π
l
2,s

l
2)

∣Aut(πl
2, s

l
2)∣

∏
e∈E(Γl

2)
ω(e) ∏

v∈V (Γl
2)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=TH(1,+)

(3)2
(TH(1,+)

(3)
for k = 0)

)

for the second summand in equation (A). The equality with the respective spin Hurwitz numbers
holds since forgetting the additional labelling yields a factor of 3! for the case m = (1,1,1) and
a factor 1 for the case m = (3). In total we have

TH(2,+)(3)k = 3!TH
(1,+)
(3)k−1TH

(1,+)
(3)1 + 3TH

(1,+)
(3)k TH(1,+)(3)2 .

( = 3!TH(1,+)(1,1,1)TH
(1,+)
(1,1,1) + 3TH

(1,+)
(3) TH(1,+)(3) for k = 0)

Together with proposition 5.18 the result follows: We only present the computation for k > 1.
The case k = 0 is analogous and will be left to the reader:

TH(2,+)(3)k = 3!TH
(1,+)
(3)k−1TH

(1,+)
(3)1 + 3TH

(1,+)
(3)k TH(1,+)(3)2

= (3!) ⋅ ((−1)k−12k−1 + 1)(−1) + 3((−1)k2k + 1)5

= 3((−1)k2k − 2) + 3((−1)k2k + 1)5

= 18(−1)k2k + 9 = 9((−1)k2k+1 + 1).
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Remark 5.26. Choosing B to be a dumbbell graph (example 5.21 a) instead of b)) allows us
to construct a tropical analogue of the algebraic degeneration by a simple cutting procedure.
Indeed, the central edge enables us to separate the count of coverings of B into the count of
covers of two elliptic curves.
Notice that the proof of proposition 5.25 simplifies for k ⩾ 2. Due to the simple structure of the
automorphism group of a cover Γ (relevant to the count of proposition 5.25), there is always a
unique way of gluing a compatible pair (π1, π2) to recover Γ. Even if m = (1,1,1), a labelling is
not necessary: Automorphisms of Γ that permute the three edges of weight 1 that cover e′ only
come from double Wiener or bifurcated double Wiener and contribute to Aut(Γ) with a factor
of 3! for each. The multiplicity of the resulting cover is then given by 3! ⋅mult(π1) ⋅mult(π2).

1

3

3

3

3

1 3

3

13

1

1

1

1

1

1

13

1

1

1

1

1 3

1

1

1

1

Figure 35: A double Wiener at the top and all possibilities for a bifurcated double Wiener (or
its reflections, with the three bifurcations on the right) below.

Proof proposition 5.24. Fix a maximally degenerate genus h curve B as in figure 36, that is B
is an ant graph consisting of h circles connected by h − 1 edges. If k ⩾ 1, we distribute k ends
onto the circles of B such that the last h − 1 have k − 1 ends attached and the first only one.
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k − 1 ends

cut

Figure 36: Ant graph of genus 3.

We prove proposition 5.24 by applying induction on h. The base case h = 2 has been proven in
proposition 5.25. Now, suppose that proposition 5.24 holds for h− 1 and all k, we have to show

TH(h,+)(3)k = 32h−2((−1)k2k+h−1 + 1) for all k. As in the proof of proposition 5.25 we can count

pairs of tropical spin Hurwitz covers of a curve of genus h − 1 and an elliptic curve instead. To
every (π, s) ∶ (Γ, s) → (B,sB) we associate a pair [(π1, s1), (π2, s2)] by simultaneously cutting
B along the first intermediate edge and Γ along its preimage. With the same arguments we can
show that analogous degeneration formulas hold. The rest follows by induction:

TH(h,+)(3)k = (3!)TH
(h−1,+)
(3)k−1 TH(1,+)(3)1 + 3TH

(h−1,+)
(3)k TH(1,+)(3)2

= (3!) ⋅ 32(h−1)−2((−1)k−12k−1+h−1−1 + 1)(−1) + 3 ⋅ 32(h−1)−2((−1)k2k+h−1−1 + 1)5

= 32h−3((−1)k2k+h−2 − 2) + 5 ⋅ 32h−3((−1)k2k+h−2 + 1)

= 6 ⋅ 32h−3(−1)k2k+h−2 − 2 ⋅ 32h−3 + 5 ⋅ 32h−3 = 32h−2((−1)k2k+h−1 + 1),

for k ⩾ 1 and

TH(h,+)(3)0 = (3!)TH
(h−1,+)
(3)0 TH(1,+)(3)0 + 3TH

(h−1,+)
(3)1 TH(1,+)(3)1 = 3

2h−2
(2h−1 + 1),

for k = 0.

5.1.3 Degree 3 with genus 1 base and odd theta characteristic.

We let the target curve B be a straight line with k vertices and k ends such that the first k − 1
are tri-valent genus 0 vertices and the last one, v′, has genus 1 (figure 23) with parity function

sB ∶ V (B)→ Z/2Z, v ↦
⎧⎪⎪
⎨
⎪⎪⎩

0, g(v) = 0

1, g(v) = 1
.

Describtion of tropical spin covers of (B,sB). Let π ∶ Γ → B be a tropical cover such that
the edge weights of Γ are odd. By simultaneously cutting B along the bounded edge that is
adjacent to v′ and Γ along its preimage, we obtain a tropical Hurwitz cover of TP1 together with
a (possibly disconnected) cover of the one-valent star graph B′v with genus 1 vertex v′. Both
coverings can be analysed separately. We endow the first with a parity function as in definition
5.3. The second can be reconstructed from local Hurwitz numbers (as in subsection 5.1.2) of
the form Hv =H

g(v)
d(v)
ÐÐ→1

(nv) where nv is an odd partition of d(v). Assigning parities involves

the computation of the corresponding algebraic spin Hurwitz numbers.

Lemma 5.27. Let π ∶ Γ → B be a tropical Hurwitz cover of degree 3 such that the edge weights
of Γ are odd and B is as above. All covers πv′ ∶ Γv′ → B′v are listed below:
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1. Γv′ is a vertex of genus 2 with one end of weight 3 (figure 37, type 1),

2. Γv′ is a vertex of genus 1 with three ends of weight 1 (figure 37, type 2),

3. Γv′ is a disjoint union of a vertex of genus 1 with two ends of weight 1 and a vertex of
genus 1 with one end of weight 1 (figure 37, type 3),

4. Γv′ is a disjoint union of three vertices of genus 1 each with an edge of weight 1 (figure 37,
type 4).

Then Γ is obtained by gluing Γv′ to a tropical 3-cycle cover Γ̃ as in definition 3.10 whose
ramification profile over the left end is (3) and over the right end is either (3) (if Γv′ is of type
1) or (1,1,1) (for type 2-4).

1

3

1
1

1

1

1

1

1

1

type 1. type 2. type 3. type 4.

1
2 1

1

1

1

1

Figure 37: All combinatorial types for Γv′ numbered according to lemma 5.27 with genus function
in red.

Proof. For the first part (statement 1-4) we compute all Hurwitz numbers of the form H●
g

3
Ð→1
(n)

where n is an odd partition of 3 and g depends on n. There are two possibilities n = (3) and
n = (1,1,1) with corresponding Hurwitz numbers:

H●
1

3
Ð→1
((1,1,1)) and H●

2
3
Ð→1
((3)).

First, note that a Hurwitz cover that contributes to H●
2

3
Ð→1
((3)) has a connected source curve,

henceH●
2

3
Ð→1
((3)) =H

2
3
Ð→1
((3)) and we have only one tropical picture (type 1). ForH●

1
3
Ð→1
((1,1,1))

the source curve may be disconnected. This gives rise to the remaining three possibilities (type
2-4).
We compute H

2
3
Ð→1
((3)) tropically (see figure 38):

H
2

3
Ð→1
((3)) = 1 + 2 = 3.

3

1

2

1
33 1 ⋅ 2

Figure 38: Computation of TH
2

3
Ð→1
((3)).
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For H●
1

3
Ð→1
((1,1,1)) we count monodromy representations, i.e. tuple (σ1, σ2) ∈ S3

2 such that

σ1σ2σ1
−1σ2

−1 = id. We have

H●
1

3
Ð→1
((1,1,1)) =

1

3!
+

9

3!
+

8

3!
= 3,

where we arranged the sum to match the tropical pictures: The first summand corresponds to
the tuple (id, id) (figure 37, type 4), the second to tuples where either σ1 or σ2 or both are
transpositions (figure 37, type 3) and the third to tuples where either σ1 or σ2 or both are
3-cycles (figure 37, type 2).
The last statement about Γ is clear from the discussion above lemma 5.27.

Remark 5.28. Alternatively, a tropical cover as in lemma 5.27 can be obtained from a tropical
Hurwitz cover of B′ by simultaneously contracting the cycle on the base curve and its preimage
(figure 39).

g = 1

g = 1

3 3 3

11
1

1

1 3 3 3

1
1

1

Figure 39: A tropical cover of B′ before contraction on the left, after contraction on the right.
Only bounded edges are labelled with weights.

Lemma 5.29. A cover π ∶ Γ → B as in lemma 5.27 defines a unique admissible parity function
on Γ:

s(v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, g(v) = 0

1, g(v) ⩾ 1
with p(π, s) = ∑

v∈V (Γ)
s(v)mod 2.

Proof. Let s be an admissible parity function. From section 5.1.1 we know that the restriction
of s on V (Γ) ∖ π−1(v′) is unique. Consider the (possibly disconnected) open cover πv′ from Γv′

to Bv′ where Γv′ is as in figure 37 type 1-4. Let f ∶ C → E be a Hurwitz cover dual to πv′

where E is a smooth curve of genus 1. We endow E with the only odd theta characteristic5,
the trivial bundle N = 0 which also happens to be the canonical bundle of E. If Γv′ is of type
2-4, f is an unramified map (or unramified tuple of maps) whose source curve is also of genus

1. Without loss of generality we call potential component maps again f . We have
Rf

2 = 0 since
f is unramified and, hence, by theorem 2.19

Lf = f
∗
(N)⊗O(

Rf

2
) ≅ f∗(ωE)⊗O(Rf) ≅ ωC .

Thus, p(f) = h0(C,ωC) mod 2 = 1 since C has genus 1 as well.
If Γv′ is of type 1, f counts towards H

2
3
Ð→1
((3)). Note that in this case the Hurwitz and spin

Hurwitz number differ only by a sign, i.e. H
2

3
Ð→1
((3)) = 3 = −H

(1,−)
(3) . We conclude that p(f) = 1

is the only possible parity.

5This is true since E has genus 1.
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By inspection of the proof of lemma 5.27 we have the following:

Lemma 5.30. The multiplicity of (π, s) ∶ Γ→ B is given by mult(π, s) =

1

∣Aut(Γ, s)∣
∏

e∈E(Γ)bounded
ω(e)

1

3

∣{v∶g(v)=1}∣
2I ∏

v∈π−1(v′)
nv!H(1,−)((π, s), v),

where I is the set of vertices as in figure 31 (2) and all possible local spin Hurwitz numbers
H(1,−)((π, s), v) are listed below.

• H(1,−)((π, s), v) = 3, if v ∈ π−1(v′) and π−1(v′) is of type 1 (figure 37).

• H(1,−)((π, s), v) = 8
3! , if v ∈ π

−1(v′) and π−1(v′) is of type 2 (figure 37).

• H(1,−)((π, s), v) = 9
3! , if v ∈ π

−1(v′) and π−1(v′) is of type 3 (figure 37).

• H(1,−)((π, s), v) = 1, if v ∈ π−1(v′) and π−1(v′) is of type 4 (figure 37).

Proof. Since an admissible parity function on Γ is unique we have

• H(0,+)((π, s), v) =Hv for each vertex v ∈ V (Γ) ∖ π−1(v′).

• H(1,−)((π, s), v) =H
g(v)

d(v)
ÐÐ→1

(nv) for v ∈ π
−1(v′).

Hurwitz numbers corresponding to the first case were already computed in section 5.1.1. The
second follows by inspection of the proof of lemma 5.27.

We have a count analogous to the one in [LP13] in the tropical world.

Proposition 5.31. For k ∈ N we have TH(1,−)(3)k = (−1)
k2k − 1.

Example 5.32. We compute

TH(1,−)
(3)2

= 3 ⋅
1

3
⋅ 3 − 2 ⋅

1

3!
+ 2 ⋅

9

3!
− 2 ⋅

8

3!
= 3.

1

B

0

v′

101 0

1

0

1

1

1

1

1

1

1

3 1

1

1

1

1
1

1

p(π, s)

mult(π, s)

0 1 10

3 ⋅ 13 ⋅ 3
1
3! ⋅ 2 ⋅ 3! ⋅

8
3!

1
2 ⋅ 2 ⋅ 2! ⋅

9
3!

1
3! ⋅ 2 ⋅ 1

Γ

Figure 40: Combinatorial type of curves with parity and multiplicity that contribute to TH(1,−)
(3)2

.

We omit weighting on the ends of Γ to avoid cluttering the picture.
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The main ingredient for the proof of proposition 5.31 is the following observation:

Lemma 5.33. Let Tk be the set of tropical spin Hurwitz covers (π, s) ∶ (Γ, s)→ (B,sB) such that

(π, s) contributes to TH(1,−)(3)k and π−1(v′) is of type 2-4 (lemma 5.27) where v′ is the genus 1 of

B. Then

∑
(π,s)∈Tk

(−1)p(π,s) ⋅mult(π, s) = 0.

For reason of practicality we rewrite the multiplicity of (π, s) in lemma 5.30 as

mult(π, s) =
3!

∣Aut(Γ̃, s̃)∣
∏

e∈E(Γ)bounded
ω(e)

1

3

∣{v∶g(v)=1}∣
2I ⋅ ei,

where

• Γ̃ ∶= Γ ∖ π−1(v′) and s̃ is the restriction of s to Γ̃ .

• i = 1 with e1 = 3, if π
−1(v′) is as in figure 37 (type 1).

• i = 2 with e2 =
8
3! , if π

−1(v′) is as in figure 37 (type 2).

• i = 3 with e3 =
9
3! , if π

−1(v′) is as in figure 37 (type 3).

• i = 4 with e4 =
1
3! , if π

−1(v′) is as in figure 37 (type 4).

Proof. Let i = 2,3,4. We introduce the following notation: For an open cover of Bv′ of type i
(lemma 5.29) we write (πi

v′ ∶ Γ
i
v′ → Bv′ , s

i
v′) such that Γi

v′ is of type i and siv′ is given by siv′(v) = 1
for all v ∈ V (Γi

v′). Observe that gluing a spin Hurwitz cover (π̃, s̃) of TP1 that counts towards

TH(0,+)(3)k,(1,1,1) to a cover (πi
v′ , s

i
v′) gives rise to a cover in Tk and that all covers in Tk arise in this

way. Denote by (πi, si) the resulting cover. We have

(−1)p(πi,si)mult(πi, si) = (−1)
p(π̃,s̃)mult(π̃, s̃) ⋅ (3!) ⋅ ẽi,

where ẽi ∶= (−1)
p((πi

v′
,si

v′
))ei is the signed weight of type i and 3! appears seeing that by gluing

we loose a double balanced fork (the ends of Γ̃ over +∞). With ∑4
i=2 ẽi = 0 we get

∑
(π,s)∈Tk

(−1)p(π,s) ⋅mult(π, s) =
4

∑
i=2
∑
(π̃,s̃)
(−1)p(πi,si)mult(πi, si)

= ∑
(π̃,s̃)
(−1)p(π̃,s̃)mult(π̃, s̃) ⋅ (3!) ⋅ (ẽ1 + ẽ2 + ẽ3 + ẽ4) = 0.

Proof of proposition 5.31. By lemma 5.33 we only have to count covers where π−1(v′) is a vertex
of type 1 (lemma 5.27). These arise from gluing a spin Hurwitz cover (π̃, s̃) of TP1 relevant to

TH(0,+)(3)k+1 to a cover (πv′ ,sv′) of type 1 along a bounded edge of weight 3. The multiplicity and

parity changes accordingly:

mult(π, s) = 32mult(π̃, s̃) and p(π, s) = (1 + p(π̃, s̃)) mod 2.
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Together with proposition 5.17 we have:

TH(1,−)
(3)k

= ∑
(π,s)∈TS

(−1)p(π,s) ⋅mult((π, s))

= ∑
(π̃,s̃)∈Mk+1

−32(−1)p(π̃,s̃) ⋅mult(π̃, s̃)

= −32 ⋅
1

9
((−1)k+12k + 1) = (−1)k2k − 1.

Remark 5.34. By considering a target curve B of genus h ⩾ 1 whose combinatorial type is as

shown below for h = 4, we see that the computation of TH(h,−)
(3)k

is forced to run along the same

patterns as the one of TH(h,+)
(3)k

in subsection 5.1.2.

0

1

B

0

0

v′

g(v′) = 1

0

0 0

0

0

5.1.4 Degree d with genus 0 base curve and at most 4 branch points

Let us consider tropical spin Hurwitz cover of TP1 of arbitrary degree d with k ⩾,4 almost
simple ramifications. Taking advantage of the well known structure of tropical 3-cycle Hurwitz
covers ([Hah14]) we notice that only for 2-valent genus 1 vertices with edge weight ω(e) > 3
the assignment of a parity is not clear from previous analysis. In particular, we do not know
whether it is unique or not. However, we can circumvent this problem by restricting the number
of branch points to at most 4. These numbers were not computed by Lee and Parker in [LP13]
and, as far as the author knows, are also new to the classical world.

Example 5.35. Let h = 0 and d = 5 with k = 4 almost simple ramifications. Figure 41 shows all

tropical spin covers that contribute to TH(0,+)
(311)4

. Note that these consist of vertices with parity

and weight known from the degree 3 case. Hence, we can compute

TH(0,+)
(311)4

=
1

6
− 1 − 1 + 3 + 3 + 5 +

1

3
+ 2 + 1 =

25

2
.
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k = 4

p(π, s)(π, s) mult(π, s)

1
6 0

1 10 0

3 31 13

1
3

1

1

33

0

1

1

03

1

33

1

1

1

1

01 1

1 10 01

1 10 01

0

1 10 01

03

1
1

3

1 10 01

0

1

3
3

0

1

(π, s) p(π, s) mult(π, s)

p(π, s)(π, s) mult(π, s)

30
1

3
1

3

0

1 0

0 5

1
1050

1 0 01

03

1
1

3

1 10 01

1

3

1

0

(π, s) p(π, s) mult(π, s)

1

1

1

0

0

0 0 33
1
1
1

1 10 01

3 1

2

1

1

1

0
0

1
3

3
1

0

0

1

1

0

10

0

1

310

0

1

11

1

3 1

0

0
1
3

Figure 41: Tropical computation of TH(0,+)
(311)4

.

For k > 4 a cover might have an inner vertex whose parity (possibly parities) and weight is not
known yet.

5

55

3

1
11

0

5

0 ? 3

3

g(v) = 1

s(v) =?

v

Proposition 5.36. We have

• TH(0,+)
(31...1)0

= 1
d! and TH(0,+)

(31...1)1
= 0 for all d.

• TH(0,+)
(31...1)2

= 1
3(d−3)! and TH(0,+)

(31...1)3
= 3d−10

3(d−3)! for d ⩾ 4.
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• TH(0,+)
(31...1)4

= 2d3+57d2−446d+780
9(d−3)! for d ⩾ 6.

Proof. If k = 1, the set of relevant spin Hurwitz covers TS is empty. Figure 42 shows the
computation for k = 0 and k = 2.

mult(π, s) = 1
3(d−3)!

d − 3{

3 3

1

1

p(π, s) = 0

mult(π, s) = 1
d!

d{

1

1

p(π, s) = 0

k = 0 ∶ k = 2 ∶

Figure 42: Computation of TH(0,+)
(31...1)0

and TH(0,+)
(31...1)2

.

If d ⩾ 4, the two tropical spin curves (together with their multiplicity) that contribute to

TH(0,+)
(31...1)3

are shown below. We conclude TH(0,+)
(31...1)3

= 1
(d−4)! +

−1
3(d−3)! =

3d−10
3(d−3)! .

10
3

1

3

1

d − 4{

mult(π, s) = 1
(d−4)! mult(π, s) = 1

3(d−3)!

p(π, s) = 0

d − 3{

3 3

1

1

1

1

p(π, s) = 1

For TH(0,+)
(31...1)4

we notice that example 5.35 contains essentially all relevant tropical spin Hurwitz

covers. Let B = TP1 with two inner vertices and sB the parity function from subsection 5.1.1.
Construction of (π, s) ∶ (Γ, s)→ (B,sB). We start with a strand of weight 3 and (d− 3) strands
of weight 1 over −∞. Above the first vertex the following options are available to us, i.e. we can

1. split the strand of weight 3.

2. form a butterfly vertex.

3. form a genus 1 vertex.

4. join 3 strands.
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Option 1. After splitting the strand of weight 3 into three strands of weight 1, we are forced to
join three strands of weight 1 above the second vertex to create the ramification profile (3,1, ...,1)
over +∞. All covers with multiplicity and parity are shown below

1

3
0 1

1

1

0
3

1

1

0

0

3

31

1

0

1
0

0
3

1

11

1

3

mult(π, s) = 22

3!(d−3)!

d − 3{

1

1

mult(π, s) = 22

2(d−4)!

d − 4{

1

1

mult(π, s) = 22

22(d−5)!

d − 5{

1

1

mult(π, s) = 22

(3!)2(d−6)!

d − 6{

1

3

1

10

0
3

1

1

1

1

1

Option 2. The only possibility for a butterfly vertex of non-zero multiplicity has in-going and
out-going edges of weight 3 and 1. Above the second vertex we are left with the choice of either
creating a genus one vertex on the strand of weight 3 or forming another butterfly vertex.

mult(π, s) = 3
(d−5)!

d − 5{
1

03

1

1

3 30

1

1

1

03

1 1

3

1

30 0
3

1

1

33

1

d − 4{ 1

1

d − 4{ 1

1

mult(π, s) = 3
(d−4)!

mult(π, s) = 3
3(d−4)!

Option 3. After creating a vertex of genus 1 on the strand of weight 3, we can either create
another genus 1 vertex or form a butterfly vertex above the second branch point.
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mult(π, s) = 3
32(d−3)!

d − 3{
1

0
3

1

1
3

3

1

1

mult(π, s) = 3
3(d−4)!

3 31 13

d − 4{
1

1

Option 4.1. We join 3 strands of weight 1. Above the second branch point we can either split
this strand into 3 strands of weight 1 or choose to split the other strand of weight 3 and obtain
a cover as in option 1 with two disconnected balanced double forks.
Option 4.2. We join 3 strands, two of weight 1 and one of weight 3. The only possibility above
the second vertex is to split again.

mult(π, s) = 22⋅3
3⋅(3!)2(d−6)!

d − 6{
1

1

1

mult(π, s) = 22⋅5
22(d−5)!

3

1

1

1

11

1
030

d − 5{
1

1

3

1

3

1 1

050

Adding all contributions together and taking into account the sign provided by the parity func-
tions (in green) yields the claim.

5.2 Correspondence theorems

In this section, we state and prove two correspondence theorems, theorem 5.37 and 5.41, declar-
ing the equality of spin Hurwitz numbers as defined in 4.2 to their tropical counterparts defined
in 5. We can use theorem 5.37 and the computations in proposition 5.36 to conclude

• H
(0,+)
(31...1)0

= 1
d! and H

(0,+)
(31...1)1

= 0 for all d.

• H
(0,+)
(31...1)2

= 1
3(d−3)! and H

(0,+)
(31...1)3

= 3d−10
3(d−3)! for d ⩾ 4.

• H
(0,+)
(31...1)4

= 2d3+57d2−446d+780
9(d−3)! for d ⩾ 6.
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5.2.1 Even case

Theorem 5.37 (Correspondence Theorem 1). For the numbers TH(h,+)
m1,...,mk defined in 5.9 and the

numbers H
(h,+)
m1,...,mk defined in 4.9 we have TH(h,+)

m1,...,mk =H
(h,+)
m1,...,mk .

The equalities of the numbers TH(h,+)
mk and H

(h,+)
mk for the special cases considered in 5.1.1, 5.1.2

and 5.1.3 can be used to give an indirect proof of the correspondence theorem (in these cases).
The advantage is, of course, that a tropical proof is much simpler. Instead of a complicated
algebraic degeneration, the proof reduces to a mere count of graphs. The disadvantage, however,
is that it keeps the relation between the tropical and the algebraic count hidden. Therefore, we
give an alternative proof that makes use of a degeneration argument.
The idea of the proof is simple: Iterate the degeneration procedure in 4.4 until the base curve
D is a maximal quasistable degeneration. We obtain 1-parameter families of stable spin curves
(Ŷ, N̂ ) and (X̂ , L̂) whose special fibres are the maximal quasistable degeneration of D and its
quasistable cover. By taking dual graphs we translate the count into the tropical world and
record the number of maps (weighted by their automorphism group) that tropicalize to the
same object. This gives us the weight with which we should count tropical spin Hurwitz covers.
The procedure of tropicalizing algebraic families of covers can be made concrete in terms of
Berkovich skeleta by using the tropicalization map in Definition 5.1.1 ([CMP20]). First, we
consider the case h = 0, i.e. spin Hurwitz numbers of P1, in detail before deducing the statement
for the general situation.
Preparing the proof of theorem 5.37. Let us investigate the iterated degeneration from the

perspective of numbers only. Start with a spin Hurwitz number H
(0,+)
m1,...,mk and apply k−3 times

degeneration formula (1) in theorem 4.19:

H
(0,+)
m1,...,mk =∑

m1

∣m1∣m1!H
(0,+)
m1,...,mk−2,m1

H
(0,+)
m1,mk−1,mk

=∑
m1

∣m1∣m1!H
(0,+)
m1,mk−1,mk(∑

m2

∣m2∣m2!H
(0,+)
m1,...,mk−3,m2

H
(0,+)
m2,mk−2,m1

)

=∑
m1

∑
m2

∣m1∣∣m2∣m1!m2!H
(0,+)
m1,mk−1,mkH

(0,+)
m2,mk−2,m1

H
(0,+)
m1,...,mk−3,m2

= ⋯

=∑
m1

... ∑
mk−3

∣m1∣ ⋅ ... ⋅ ∣mk−3∣m1! ⋅ ... ⋅mk−3!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fm1,...,mk−3

H
(0,+)
m1,mk−1,mk ⋅ ... ⋅H

(0,+)
m1,m2,mk−3

.

Consider a partition of M, the set of isomorphism classes of maps contributing to H
(0,+)
m1,m2,m3 ,

into the spaces of maps with even and odd parity,M =M0 ∪M1, and write

H(0,+)m1,m2,m3
= (H(0,+)m1,m2,m3

)
0
− (H(0,+)m1,m2,m3

)
1
, where

(H(0,+)m1,m2,m3
)
1
∶= ∑

f∈M1

1

∣Aut(f)∣
and (H(0,+)m1,m2,m3

)
0
∶= ∑

f∈M0

1

∣Aut(f)∣
.
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H
(0,+)
m1,...,mk =∑

m1

... ∑
mk−3

Fm1,...,mk−3
H
(0,+)
m1,mk−1,mk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶H(0,+)1

⋅... ⋅ .H
(0,+)
m1,m2,mk−3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶H(0,+)

k−2

=∑
m1

... ∑
mk−3

Fm1,...,mk−3
((H

(0,+)
1 )0 − (H

(0,+)
1 )1) ⋅ ... ⋅ ((H

(0,+)
k−2 )0 − (H

(0,+)
k−2 )1)

=∑
m1

... ∑
mk−3

Fm1,...,mk−3 ∑

ν∈(Z/2Z)k−3

k−2
∏
j=1
(−1)νj(H

(0,+)
j )

νj

=∑
m1

... ∑
mk−3

Fm1,...,mk−3

k−2
∑

ν∈(Z/2Z)
(−1)

k−2

∑
j=1

νj k−2
∏
j=1
(H
(0,+)
j )

νj
.

We will see that a tropical spin Hurwitz cover (π, s) corresponds to the choice of k − 3 odd
partitions (m1, ...,mk−3) and an element ν ∈ (Z/2Z)k−2 such that

mult(π, s) = Fm1,...,mk−3

k−2
∏
j=1
(H
(0,+)
j )

νj
and p(π, s) =

k−2
∑
j=1

νj mod 2.

We record the discussion in the following lemma.

Lemma 5.38. All (disconnected) degree d spin Hurwitz numbers H
(0,+)
m1,...,mk are determined in

terms of (disconnected) spin Hurwitz numbers of the form H
(0,+)
n1,n2,n3 . Using the notation from

the previous discussion we have

H
(0,+)
m1,...,mk =∑

m1

... ∑
mk−3

Fm1,...,mk−3 ∑

ν∈(Z/2Z)k−2
(−1)

k−2

∑
j=1

νj k−2
∏
j=1
(H
(0,+)
j )

νj
.

Remark 5.39. Note that Hurwitz and spin Hurwitz numbers are related by

H
g

d
Ð→0
(m1,m2,m3) = (H

(0,+,c)
m1,m2,m3

)
0
+ (H(0,+,c)m1,m2,m3

)
1
,

where c indicates that we consider connected spin Hurwitz numbers (see section 5). In the case

d = 3 or d = 4, we have either (H
(0,+,c)
m1,m2,m3)1 = 0 or (H

(0,+,c)
m1,m2,m3)0 = 0. We can rephrase the

uniqueness question from the beginning of section 5 in the following way: A tropical Hurwitz
cover

π has a unique parity function if and only if (H(0,+,c)m1,m2,m3
)
1
= 0 or (H(0,+,c)m1,m2,m3

)
0
= 0.

Proof of theorem 5.37 for h = 0. The proof consists of three main steps.

Main steps 5.40.

1. Iterate degeneration procedure in section 4.4.

2. Tropicalize the obtained stable spin curves.

3. Construct a surjection ϕ ∶ S → TS that takes a degenerate spin Hurwitz cover to a tropical
spin Hurwitz cover.

Preliminaries. For the discrete data in theorem 5.37, that is d, h, k and odd partitions m1, ...,mk,
fix
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• a spin curve (D,N) of genus h with parity p ∶= h0(N) mod 2 = 0 mod 2.

• a collection of distinct points V ∶= {q1, ..., qk} ⊂D , the prescribed branch points.

Recall that the spin curve degeneration in 4.4 relates the count of spin Hurwitz covers of (D,N)
to the count of degenerate spin Hurwitz covers of a nodal curve D0 =D2∪E∪D1 that was fixed in
advance. In fact, Theorem 5.1. [LP13] produces (provided we choose a ramification behaviour,
i.e. an odd partition m of d, over the nodes) for any degenerate map f0 = (f2, fe, f1) ∈Mm,0,
a family of stable spin curve (D,N ) and “the right number” of families of covering spin curves
(Cζ ,Lζ) (with parameter s) together with holomorphic maps Fζ ∶ Cζ → D, such that the map
between special fibres is given by f0 and p(fζ,s) = p(f2) + p(f1) , where fζ,s ∶= Fζ ∣Cζ,s . Twisting

the construction around we can think of taking f ∶ C → D ∈ MV
χ,m1,...,,mk (MV

χ,m1,...,mk is

relative Gromov-Witten space of V −regular maps defined in 4.4 (step 0)) together with the
theta characteristic Lf and degenerating both cover and base curve simultaneously to D0 to
obtain

• a degenerate spin Hurwitz cover f0 ∶= (f2, fe, f1) ∶ C0 = C2 ∪
l

⋃
i=1

Ei ∪C1 →D0 and

• a spin structure on C0 that restricted to the smooth curve Ci is given by Lfi for i = 1,2
and p(f) = p(f2) + p(f1).

1. Iterated degeneration. We assume h = 0 and describe the iterated degeneration procedure in
this case. The case h = 1 is similar, but will not be carried out in detail. We start by setting
D0 to be a chain of three P1 meeting in two nodes, p1 and p2, together with k + 3 distinct
points (fixing 3 additional points where f is unramified ensures that all automorphism groups
of V -regular maps are trivial) such that

qk+1, q1, ..., qk−2, p2 ∈D2, p
2, qk+2, p1 ∈ E and qk+3, qk−1, qk, p1 ∈D1.

Given f ∈ MV
χ,m1,...,mk,(1d)3

together with theta characteristic Lf deform domain and target

(meaning construct stable spin curves (D,N ) and (C,L) where we omit the index ζ to make
notation lighter) to obtain a limit map f0 with odd ramification profile m1 over the nodes p

1 and

p2. Memorize the component maps fe and f1 and the pair (
l

⋃
i=1

Ei ∪C1,L l
⋃
i=1

Ei∪C1

). Set D ∶= D2

with theta characteristic N ∶= N∣D2
, f ∶= f2, C ∶= C2 and qk−1 ∶= p2. Fix D0 ∶= D2 ∪ E ∪D1

with nodes p1, p2 and two additional point qk, qk+1 ∈ D0, such that qk, q1, ..., qk−3, p2 ∈ D2 and
p1, qk+2, qk−2, qk−1 ∈D1.
Repeat the previous step with the map f ramified over k − 1 branch points (q1, ..., qk−1) with
ramification profile m1, ...,mk−2,m1. Continue until D contains only three branch points. The
process terminates after k − 3 steps.
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D2 D1

E2

E1

p2 p1

qk
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Figure 43: The first two degeneration steps on the base curve.

Collecting all memorized data together we end up with a holomorphic map F , stable spin
structures (D̂, N̂ ) and (Ĉ, L̂) such that the special fibres encode the following data:

1. A maximal degenerate target curve: D0 = Dk−2 ∪ E ∪Dk−3 ∪ ... ∪D2 ∪ E ∪D1, that is a
chain of 2k − 5 copies of P1.

2. A degenerate domain curve: C0 = Ck−2 ∪
lk−3
⋃
i=1

Ei ∪Ck−3 ∪ ... ∪C2 ∪
l1
⋃
i=1

Ei ∪C1.

3. A degenerate map f0 = (fk−2, fe, fk−3, ..., f1).

4. Theta characteristics L∣Ci
= Lfi for i = 1, ..., k − 2.

The family of quasistable curves Ĉ is made by gluing the smooth family C from degeneration

step k − 3 to the nodal rest, Ck−3 ∪ ... ∪ C2 ∪
l1
⋃
i=1

Ei ∪ C1, from the previous one: For s ≠ 0 the

generic fibre of Ĉ is the quasistable curve Cs ∪Ck−3 ∪ ...∪C2 ∪
l1
⋃
i=1

Ei ∪C1 where Cs is the generic

fibre of C. The family D̂ is constructed analogously.
Let us call the set of these glued maps Mm1,...,mk−3,0 (in the style of the space Mm,0). As we
have seen in the proof of theorem 4.19 (here just in iterated form) these contribute to the count
in the following way:

H
(0,+)
m1,...,mk =

1

(d!)2k−5
k

∏
i=1

mi!

∑
(m1,...,mk−3)

k−3
∏
i=1
∣mi∣

2
∑

f0∈Mm1,...,mk−3,0

(−1)p(f0). (6)

Recall, the first factor accounts for counting spin Hurwitz covers with a marking of all ramifica-
tion points. Keeping track of the number of maps degenerating to a nodal cover yields a factor
∣mi∣

2 in each degeneration step (each node in the domain curve can be smoothed in ∣mi∣ ways).

2. Tropicalization. Now, we are ready to tropicalize the families of stable spin structures
(D̂, N̂ ) and (Ĉ, L̂) by taking dual graphs of both special fibre, (C0, L̂∣C0

) and (D0, N̂∣D0
), like in

definition 3.23. The tropical spin curve (Γ,∅, s) ((B,∅, s̃)) is just the dual spin graph (definition
4.18) of (C0, L̂∣C0

) ((D0, N̂∣D0
)) with metric l1 (l2) given in [CMP20] (Definition/Lemma 5.1.1):
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Indeed, denote C̃ (D̃) the stable model of C0 (D0) with set of nodes F1 (F2). We see that C0

(D0) is the blow up of C̃ (D̃) at R1 = F1 (R2 = F2). For i = 1,2 this yields Pi = Fi ∖Ri = ∅.
The corresponding map π ∶ Γ → B is the obvious map provided by the geometric covers. Note
that (π, s) is a tropical spin Hurwitz cover relevant to the tropical count. Indeed, the family of
target curves (D̂, N̂ ) is identical for all maps f that undergo step 1. Its tropicalization is just
the line TP1 with k − 2 inner vertices and carries the right parity.

3. Construction of ϕ. To alleviate notation set m1 = ... =mk =m for an odd partitition of d and
denote by S the set of all (equivalence classes of) degenerate spin coverings (f0 ∶ C0 → D0,L0)
of (D0, N̂∣D0

), where

• (C0,L0) is a stable spin curve.

• (fi,L0∣Ci
) = (fi, Lfi) for i = 1, ..., k − 2.

• for i = 2, ..., k − 3 the map fi counts towards H
(0,+)
i ∶= H

(0,+)
m1,m,m2 , where m1 and m2 are

arbitrary odd partitions of d.

• f1 and fk−2 count towards H
(0,+)
1 ∶=H

(0,+)
k−2 ∶=H

(0,+)
m1,m,m.

Equivalently we have

S ∶= {(f0 = (f1, f
1
e , ..., f

k−3
e , fk−2),L0) is obtained via step 1. }

Let TS be the set of tropical spin covers (definition 5.9). We construct a map

ϕ ∶ S → TS, (f0,L0)↦ (π, s)

and show that

1. ϕ is well-defined.

2. ϕ(S) = TS, i.e. ϕ is surjective.

3.

(−1)p((π,s))mult((π, s)) =
1

(d!)2k−5(m!)k
∑

(f0,L0)∈ϕ−1((π,s))

k−3
∏
i=1
∣mi∣

2
(−1)p(f0) (7)

where m1, ...,mk−3 are determined by the edge weights of Γ.

Together with equation (6) these statements prove theorem 5.37 for h = 0.
Let (f0,L0) ∈ S. Following step 2 yields a tropical spin curve (Γ, s) together with a cover π.
Define ϕ((f0,L0) ∶= (π, s). Clearly π is a tropical Hurwitz cover with the right ramification
profile over ±∞ and s is an admissible parity function. Hence, ϕ is well-defined, i.e. (π, s) is
relevant to the tropical count. Statement two and three follow essentially from going step 2
backwards, that is reconstructing all elements in ϕ−1((π, s)) from a given tropical spin Hurwitz
cover. To simplify this reconstruction we start by working on the right-hand side of (7).
The following computation is just an iterated version of the one in step 6 in section 4.4. We will
use the same notation to make the connection clear: Denote by Pm1,...,mk−3

the product space

Mm1 ×M
e
m1
× ... ×Me

mk−3
×Mmk−3
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where Mm1 and Me
m1

are the spaces in remark 4.24. We relate the count of glued maps
f0 ∈Mm1,...,mk−3,0 to the count of disjoint maps in Pm1,...,mk−3

obtained via pull back under the
covering map Pm1,...,mk−3

→Mm1,...,mk−3,0 (this means we count disjoint tuple instead) and get

∑
(f0,L0)∈π−1((π,s))

(−1)p(f0) =
1

∏
k−3
i=1 (mi!)

2 ∑
(f1,f1

e ,...,f
k−3
e ,fk−2)

(−1)p(f1)+...+p(fk−2)

=
1

∏
k−3
i=1 (mi!)

2 ∑
f1
e ∈Me

m1

... ∑
fk−3
e ∈Me

mk−3

(−1)p(f1)+...+p(fk−2)

where the sum goes over (f1, f
1
e , ..., f

k−3
e , fk−2) ∈ Pm1,...,mk−3

such that glueing yields a map
f0 ∈ π

−1((π, s)). The second equality follows from the fact that for i = 1, ..., k − 3 forgetting
contact marked points of maps in Me

mi
gives exactly one map (proof lemma 2.2. in [Lee13]).

Hence, even if the parities of the component maps fi are fixed by s, they can be combined with
all labelled maps in the spacesMe

mi
. This is good news, since going over to the tropical world

we shrink all exceptional components and thus forget about the intermediate maps f i
e. With

∣Me
mi
∣ =

d!mi!
∣mi∣ (lemma 2.2, [Lee13]) we get

1

∏
k−3
i=1 (mi!)

2 ∑
f1
e ∈Me

m1

... ∑
fk−3
e ∈Me

mk−3

(−1)p(f1)+...+p(fk−2) = (d!)k−3
k−3
∏
i=1

mi!

∣mi∣
∑

(f1,f2,...,fk−2)
(−1)p(f1)+...+p(fk−2).

Switching back to counting tuple whose components are usual spin Hurwitz covers
f̊ ∶= (f1, f2, ..., fk−2) (without marking of ramification points) yields

∑
(f0,L0)∈π−1((π,s))

(−1)p(f0) = (m!)k(d!)2k−5
k−3
∏
i=1

mi!

∣mi∣
∑

f̊

(−1)p(f̊)

∣Aut(f̊)∣
.

where the sum goes over all tuple of maps such that fi counts towards H
(0,+)
i (note that the

numbers H
(0,+)
i are fixed by the edge weights of Γ) and thus

1

(d!)2k−5(m!)k
∑

(f0,L0)∈π−1((π,s))

k−3
∏
i=1
∣mi∣

2
(−1)p(f0) =

k−3
∏
j=1

mj !∣mj ∣∑

f̊

(−1)p(f̊)

∣Aut(f̊)∣
. (8)

To see that the right-hand side matches the tropical multiplicity we reconstruct f̊ from (π, s) ∈
TS. In passing, this allows us to see that ϕ is surjective as well.

Let (π, s) ∈ TS. For each vertex v ∈ V (Γ) let fv ∶ Cv → Dv be a spin Hurwitz cover counting
towards H(0,+)((π, s), v) together with its theta characteristic Lfv such that p(fv) = s(v). Let

C̊ be the disjoint union of all curves Cv and f̊ be the map defined by f̊∣Cv
∶= fv.

We see immediately

k−3
∏
j=1

mj !∑
f̊

(−1)p(f̊)

∣Aut(f̊)∣
=

1

∣Aut(Γ)∣
(−1)∑v∈V (Γ) s(v) ∏

v∈V (Γ)
nv
1!n

v
2!n

v
3!H

(0,+)
((π, s), v).

Thus the right-hand side of (8) is almost the tropical multiplicity. Using
k−3
∏
j=1
∣mj ∣ = ∏

e∈E(Γ)
ω(e)

completes the proof

k−3
∏
j=1
∣mj ∣mj !∑

f̊

(−1)p(f̊)

∣Aut(f̊)∣
= (−1)p(π,s)mult(π, s).
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Proof of theorem 5.37 for h > 0. If h > 0 the proof consists of the same three steps 5.40. In
order to obtain a maximally quasistable degeneration of a base curve D of genus h, we apply
degeneration procedure (2) (theorem 4.19) h times first, i.e. reduce the genus by 1 in each step.
We end up with a nodal curve of genus 0. Now, we can continue just as in step 1 of the proof
of theorem 5.37. We tropicalize the special fibres according to step 2 and construct the map ϕ
in the same way.
The only thing left open is to notice that the tropical spin curves from step 2 are counted with
the right multiplicity. To see this let us look at the degeneration from the perspective of numbers
only:

Let (h, p) = (h,+), where h > 0. Start with a spin Hurwitz number H
(h,+)
n1,...,nk and apply h times

degeneration formula (2) in theorem 4.19:

H
(h,+)
n1,...,nk =∑

m1

∣m1∣m1!H
(h−1,+)
m1,m1,n1,...,nk

= ⋯

=∑
m1

...∑
mh

∣m1∣ ⋅ ... ⋅ ∣mh∣m1! ⋅ ... ⋅mh!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Fm1,...,mh

H
(0,+)
m1,m1,...,mh,mh,n1,...,nk

Now, set k̃ ∶= 2h + k and apply k̃ − 3 times degeneration formula (1) in theorem 4.19:

H
(h,+)
n1,...,nk =∑

m1

...∑
mh

Fm1,...,mh
(∑
m̃1

... ∑
m̃k̃−3

Fm̃1,...,m̃k̃−3
∑

ν∈(Z/2Z)k̃−2
(−1)∑

k̃−2
j=1 νj

k̃−2
∏
j=1
(H
(0,+)
j )

νj
)

= ∑
m1,...,mh

∑
m̃1,...,m̃k̃−3

Fm1,...,mh
Fm̃1,...,m̃k̃−3

∑

ν∈(Z/2Z)k̃−2
(−1)∑

k̃−2
j=1 νj

k̃−2
∏
j=1
(H
(0,+)
j )

νj
,

where H
(0,+)
j is the spin Hurwitz number with 3 special points (branch points or nodes) we split

off in the the j−th step. We see that a tropical spin Hurwitz cover (π, s) corresponds to an

ordered choice of k̃ − 3 odd partitions and an element ν ∈ (Z/2Z)k̃−2 such that

mult(π, s) = Fm1,...,mh
Fm̃1,...,m̃k̃−3

k̃−2
∏
j=1
(H
(0,+)
j )

νj
and

p(π, s) =
k̃−2
∑
j=1

νj mod 2.

5.2.2 Odd case

Theorem 5.41 (Correspondence Theorem 2). For the numbers TH(h,−)
m1,...,mk defined in 5.13 and

the numbers H
(h,−)
m1,...,mk defined in 4.9, where h > 1, we have TH(h,−)

m1,...,mk =H
(h,−)
m1,...,mk .

Proof. The proof is analogous to the one of theorem 5.37 and consists of the same three steps

5.40. Start with a spin Hurwitz number H
(h,−)
m1,...,mk In order to obtain an almost maximally

quasistable degeneration (section 5.1) of a base curve D of genus h, we apply degeneration
procedure of theorem 4.19 (1) with h = (h − 1) + 1 and k0 = k first:

H
(h,−)
m1,...,mk =∑

m

∣m∣m!H
(h−1,+)
m,m1,...,mkH

(1,−)
m .
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Now, we can continue just as in the proof of theorem 5.37 for the numbers H
(h−1,+)
m,m1,...,mk . We

tropicalize the special fibres according to step 2. Notice that after degeneration the base curve
has a dual spin graph with a 1-valent vertex of genus 1 (dual to the only genus 1 component
with odd theta characteristic) and 3-valent genus 0 vertices else. We construct the map ϕ in
the same way. The only difference to the even case is that the degeneration procedure yields

numbers of the form H
(1,−)
m . These correspond to the preimages of the 1-valent genus 1 vertex

v′ of B and appear, as expected, in the weighting of a tropical spin Hurwitz cover (π, s) as local
spin Hurwitz numbers H(1,−)((π, s), v) for v ∈ π−1(v′).
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