UNIVERSITÄT TÜBINGEN FACHBEREICH MATHEMATIK

Convex Geometry

Winter term 2024/25

Exercise sheet 4

Exercise 1

Let $v_1, ..., v_4$ be affinely independent points in \mathbb{R}^3 . A tetrahedron T is a polytope given by the convex hull of its 4 vertices, i.e. $T = conv(v_1, ..., v_4) \subset \mathbb{R}^3$ (see Figure). Let M be the set containing the 4 vertices, the 6 edges and the 4 faces of T. Then M is a partially ordered set via

 $m_1 \leq m_2 : \Leftrightarrow m_1 \subset m_2$, where $m_1, m_2 \in M$.

Draw the Hasse diagram of (M, \leq) .

Hint: A Hasse diagram is a graph with vertex set M. Two vertices m_1 and m_2 are connected by an edge if $m_1 \leq m_2$ and there is no m_3 distinct from m_1 and m_2 such that $m_1 \leq m_3 \leq m_2$.

Exercise 2

Let $P \subset \mathbb{R}^3$ be a 3 dimensional polytope such that every pair of vertices is connected by an edge. Show that P is a Tetrahedron in the sense of exercise 1.

Exercise 3

Follow the Polymake tutorial for polytopes: https://polymake.org/doku.php/user_guide/tutorials/ apps_polytope. Define a 3 dimensional unit cube c as the convex hull of finitely many points (Vdescription) and use Polymake to convert the V-description of c to its H-description. Take a screenshot of your results.

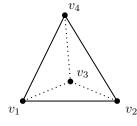
Hint: You can use the online version of Polymake: https://polymake.org/doku.php/start. To start a session, don't forget to enter 'polymake'. Note that not all methods (e.g. the 'VISUAL' method) are available when using the online version.

Exercise 4

Let $\sigma := cone(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}) \subset \mathbb{R}^3$. Determine the dual cone σ^{\vee} .

Hand in via URM. Exercise classes take place on Wednesdays 12-14, in S11.

Figure 1: A tetrahedron in \mathbb{R}^3 .



Due on: Thursday, 21.11.2024, 10:00

(6 Points)

(6 Points)

(4 Points)

(4 Points)