Prof. Hannah Markwig Dr. Felix Röhrle

Übungen zur Vorlesung lineare Algebra 1

Sommersemester 2025

Blatt 2 Abgabetermin: Mittwoch, 30.04. bis 12:00.

Aufgabe 1 (3 Punkte)

Benutzen Sie den Euklidischen Algorithmus, um das Inverse von [25] in (\mathbb{Z}_{57},\cdot) zu finden.

Aufgabe 2 (5 Punkte)

- (a) Bestimmen Sie das multiplikative Inverse von $[16] \in \mathbb{Z}_{31}$.
- (b) Lösen Sie das folgende lineare Gleichungssystem in \mathbb{Z}_{31} :

$$\begin{aligned} &[1]x_1 + [2]x_2 + [2]x_3 + [2]x_4 = [1] \\ &[1]x_1 + [2]x_3 + [1]x_4 = [1] \\ &[2]x_1 + [2]x_2 + [1]x_3 = [2] \\ &[1]x_1 + [1]x_2 + [2]x_4 = [0] \end{aligned}$$

Aufgabe 3 (6 Punkte)

Sei $(\mathbb{Z}, +)$ die Gruppe, die von der Addition auf \mathbb{Z} induziert wird.

- (a) Zeigen Sie, dass für alle $d \in \mathbb{N}$ die Menge $d\mathbb{Z}$ eine Untergruppe von $(\mathbb{Z}, +)$ bildet.
- (b) Zeigen Sie, dass jede Untergruppe von $(\mathbb{Z}, +)$ von der Form $d\mathbb{Z}$ für ein $d \in \mathbb{N}$ ist.

Sei (G, \cdot) eine Gruppe mit neutralem element id.

(c) Zeigen Sie, dass (G, \cdot) abelsch ist, wenn $g \cdot g = \mathrm{id}$ für alle $g \in G$ gilt.

Aufgabe 4 (4 Punkte)

(a) Zeigen Sie, dass es neben der Nullabbildung keinen weiteren Gruppenhomomorphimus von $(\mathbb{Q}, +)$ nach $(\mathbb{Z}, +)$ gibt.

Entscheiden Sie jeweils, ob die folgenden Abbildungen Gruppenhomomorphismen sind und begründen Sie Ihre Entscheidung.

(b)
$$f: (\mathbb{R}\setminus\{0\}, \cdot) \to (\mathbb{R}, +), x \mapsto \frac{1}{x},$$

(c)
$$g: (\mathbb{R}, +) \to (\mathbb{R} \setminus \{0\}, \cdot), x \mapsto e^x$$
.