Fachbereich Mathematik

Rainer Nagel

RainerNagel.jpeg

Kontakt

Prof. Dr. Rainer Nagel
Mathematisches Institut
Auf der Morgenstelle 10
72076 Tübingen
Germany

Raum: C6P05

Telefon: +49 (0) 7071 29 73242
Fax:      +49 (0) 7071 29 5173

E-Mail: [cryptmail:pdlowr-udqdCid1xql0wxhelqjhq1gh|udqdCid1xql0wxhelqjhq1gh]

Sprechtage

jeweils dienstags und donnerstags

Funktionen

  1. Chef der AG Funktionalanalysis Tübingen und des AGFA-TRI-TEAM
  2. Finisher des Empfingen Triathlon

Sonstiges

Doktoranden

Eine Liste meiner Doktoranden

Bücher

A. Rhandi, R. Nagel

Semigroup Applications Everywhere

Philosophical Transactions of the Royal Society Vol. 378,
Issue 2185 (2020)

Link zur Publikation

Transactions.jpeg
T. Eisner, B. Farkas, M. Haase, R. Nagel

Operator Theoretic Aspects of Ergodic Theory

Graduate Texts in Mathematics. Springer, to appear, 2015.

Link zu Springer

Operator Theoretic Aspects of Ergodic Theory (PDF)

operatortheroetic.jpg
K. Engel, R. Nagel

A Short Course on Operator Semigroups

Universitext. Springer-Verlag, New York, Berlin, Heidelberg, 2006.

A Short Course on Operator Semigroups (PDF)

ashortcourse.jpg
M. Ianelli, R. Nagel, S. Piazzera (eds.)

Functional Analytic Methods for Evolution Equations

Lecture Notes in Mathematics, 1855. Springer-Verlag, 2004.

functionalanalytic.jpg
G. R. Goldstein, R. Nagel, S. Romanelli (eds.)
Evolution Equations 234. Dekker Series of Lecture Notes, 2002.
evolutionequations.jpg
K. Engel, R. Nagel

One-Parameter Semigroups for Linear Evolution Equations

Graduate texts in mathematics, 194. Springer-Verlag, New York, Berlin, Heidelberg, 1999.

One-Parameter Semigroups for Linear Evolution Equations

oneparameter.jpg
R. Derndinger, R. Nagel, G. Palm

Ergodic Theory in the Perspective of Functional Analysis

(preprint 1987)

ergodictheroy.jpg
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. Lotz, U. Moustakas, R. Nagel, F. Neubrander, U. Schlotterbeck

One-parameter Semigroups of Positive Operators 

(1986)

oneparameter2.jpg

Key Publications


  1. R. Nagel (ed): One-parameter Semigroups of Positive Operators. Lecture Notes Math 1184, Springer-Verlag 1986.
  2. R. Nagel: Towards a "matrix theory" for unbounded operator matrices. Math. Z., 201, 57-68 (1989).
  3. R. Nagel: Order in pure and applied functional analysis. Atti Sem. Mat. Fis. Univ. Modena 39, 87-101 (1991).
  4. R. Nagel, F. Räbiger: Superstable operators on Banach spaces. Israel J. Math. 81, 213-226 (1993).
  5. R. Nagel: Semigroup methods for non-autonomous Cauchy problems. In: G. Ferreyra, G. Ruiz Goldstein, F. Neubrander (eds.): Evolution Equations. Lect. Notes Pure Appl. Math. 168, 301-316 (1995).
  6. R. Nagel, G. Nickel, S. Romanelli: Identification of extrapolation spaces for unbounded operators. Quaestiones Mathematicae 19, 83-100 (1996).
  7. R. Nagel, E. Sinestrari: Nonlinear hyperbolic Volterra integrodifferential equations. Nonlinear Analysis 27, No. 2, 167-186 (1996).
  8. R. Nagel: Characteristic equations for the spectrum of generators. Ann. Scuola Sup. Pisa, Serie IV, 24, Fasc. 4, 703-717 (1997).
  9. R. Nagel, J. Poland: The critical spectrum of a strongly continuous semigroup. Advances Math. 152 , 120-133 (2000)
  10. S. Brendle, R. Nagel, J. Poland: On the spectral mapping theorem for perturbed strongly continuous semigroups. Archiv Math. 74 , 365-378 (2000)
  11. M. Blake, S. Brendle, R. Nagel: On the structure of the critical spectrum of strongly continuous semigroups. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 55-65, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.
  12. S. Brendle, R. Nagel: PFDE with nonautonomous past. Discrete Contin. Dyn. Syst. 8, 953-966 (2002).
  13. R. Nagel, G. Nickel: Wellposedness for nonautonomous abstract Cauchy problems. Evolution equations, semigroups and functional analysis (Milano, 2000), 279--293, Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002.
  14. V. Casarino, K-J. Engel, R. Nagel, G. Nickel: A semigroup approach to boundary feedback systems. Integral Equations Operator Theory 47, 289--306 (2003).
  15. M. Kramer, D. Mugnolo, R. Nagel: Theory and applications of one-sided coupled operator matrices. Conf. Sem. Mat. Univ. Bari 283 (2002), 1-29.
  16. Jin Liang, R. Nagel, Ti-Jun Xiao:Nonautonomous heat equations with dynamic boundary conditions. J. Evolution Equations, J. Evolution Equations 3 (2003), 321-331.
  17. Nguyen Thieu Huy, R. Nagel: Linear neutral partial differential equations, a semigroup approach. Int. J. Math. Math. Sci. 23 (2003), 1433-1446.
  18. R. Nagel: Some open problems in the theory of C0-semigroups, in: S. Romanelli et al.: Interplay between C0-semigroups and PDEs; Theory and Applications. Bari 2004, 193-196.
  19. R. Nagel, E. Sinestrari: The Miller scheme in semigroup theory. Advances Diff. Equ. 9 (2004), 387-414.
  20. R. Nagel, E. Sinestrari: Extrapolation spaces and minimal regularity for evolution equations.J. Evol. Equations 6 (2006), 287-303.
  21. K.-J. Engel, M. Kramar, R. Nagel, E. Sikolya: Vertex control of flows in networks. NHM 3 (2008), 709-722.
  22. T. Eisner, B. Farkas, R. Nagel, A. Sereny: Weakly and almost weakly stable C0-semigroups. Int. J. Dyn. Syst. Diff. Equ. 1 (2007), 44-57.
  23. J. Lian, R. Nagel, T. Xiao: Approximation theorems for the propagators of higher order abstract Cauchy problems. Trans. Amer. Math. Soc 360 (2008), 1723-1739.
  24. V. Keicher, R. Nagel: Positive semigroups behave asymptotically as rotation groups. Positivity 12 (2008), 93-103.
  25. K.-J. Engel, M. Kramar Fijavz, B. Klöss, R. Nagel and E. Sikolya: Maximal Controllability for Boundary Control Problems, Applied Mathematics and Optimization 62 (2010), 205-227

Complete list of publications (AMS)

Herausgeber

von

Besondere Interessen

  • Schwimmen + Radfahren + Laufen = Triathlon (Ironman Hawaii 2002, Hawaii 1999)
  • Schwäbisch-apulische Aktivitäten
  • Rom-Seminare