Vorträge in der Woche 24.06.2019 bis 30.06.2019
Vorherige Woche
Nächste Woche
Alle Vorträge
Dienstag, 25.06.2019: Singuläre Zusammenhänge und die reduzierte singuläre Instanton-Floer-Homologie, Teil II
Prof. Dr. Frank Loose (Universität Tübingen)
Uhrzeit: |
14:00 - 16:00 |
Ort: |
C5 S7 |
Gruppe: |
Oberseminar Topologie und Differentialgeometrie |
Einladender: |
Bohle, Loose, Radloff |
Dienstag, 25.06.2019: Arithmetic Quantum Unique Ergodicity II
Martin Meßmer
Uhrzeit: |
14:15 |
Ort: |
C9 A 03 |
Gruppe: |
OSAZ |
Einladender: |
Deitmar |
Mittwoch, 26.06.2019: Describing the Jelonek set of a polynomial map via Newton polytopes
Dr. Boulos El Hilany
A polynomial map f=(f_1,...,f_n): C^n --> C^n is said to be non-proper at a point p if the preimage of any compact neighbourhood of p is not compact. The set of all such points, called the Jelonek set of f, measures how far such a map is from being proper. I will restrict to a certain large class of maps f above and present a new method for computing the non-properness set that depends on the geometry of the corresponding Newton polytopes. This method is mostly combinatorial, leads to significantly faster computations, and holds true for the real case. With this approach, previously-known results can be deduced in an easier fashion as well as new applications arise.
Uhrzeit: |
14:15 |
Ort: |
S06 |
Gruppe: |
Oberseminar Geometrie |
Einladender: |
Johannes Rau |
Donnerstag, 27.06.2019: DPW Potentials for Compact Symmetric CMC Surfaces in the 3-Sphere
Benedetto Manca
Uhrzeit: |
10:00 - 12:00 |
Ort: |
C5S7 |
Gruppe: |
Promotionsvortrag |
Einladender: |
Loose |
Donnerstag, 27.06.2019: Convergence rates for the numerical approximation of the 2D stochastic Navier-Stokes equations
Dominic Breit, Heriot Watt University, Edinburgh
We study the stochastic Navier-Stokes equations in two dimensions with
respect
to periodic boundary conditions. The equations are perturbed by a
nonlinear multiplicative
stochastic forcing with linear growth (in the velocity) driven by a
cylindrical Wiener
process. We establish convergence rates for a finite-element based
space-time approximation
with respect to convergence in probability (where the error is measure
in the
$L^\infty_t(L^2)\cap L^2_t(W^{1,2}_x)-norm$). The main result provides
linear convergence in space and convergence
of order (almost) 1/2 in time. This improves earlier results from
Carelli-Prohl, where the convergence
rate in time is only (almost) 1/4. Our approach is based on a careful
analysis of the pressure
function using a stochastic pressure decomposition.
Uhrzeit: |
14:15 |
Ort: |
N8 |
Gruppe: |
Oberseminar Numerik |
Einladender: |
Lubich, Prohl |
Donnerstag, 27.06.2019: Ancient solutions to the Ricci flow with rotational symmetry
Prof. Dr. Simon Brendle (Columbia University)
I will discuss our recent proof of Perelman's conjecture concerning the classification of singularity models in 3D Ricci flow. The proof consists of two parts: An argument reducing the general case to the rotationally symmetric case, and a classification of noncompact ancient solutions with rotational symmetry. In this lecture, I will focus on the latter part. The proof relies on a combination of several techniques, including an analysis of the linearized equation in the cylindrical region, a barrier argument, and the Harnack inequality
Uhrzeit: |
14:15 |
Ort: |
S 09 |
Gruppe: |
Oberseminar Geometrische Analysis, Differentialgeometrie und Relativitätstheorie |
Einladender: |
Cederbaum, Huisken |