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8 Base extensions

Up to this point, we were discussing modules over a given commutative ring
and their tensor products. For a complete picture, we need to understand
what happens, when we vary the underlying rings.

8.1 Remark. Let (R,+R, ·R) and (S,+S , ·S) be commutative rings with
multiplicative units. Let j : R → S be a homomorphism of commutative
rings with units, that is, we have j(1R) = 1S . We define an operation of R
on S by

λ : R× S → S
(r, s) 7→ r ·λ s := j(r) ·S s.

8.2 Lemma. The triple (S,+S , λ) from remark 8.1 is an R-module.

Proof. Straightforward, by direct verification of the axioms. �

8.3 Definition. Let j : R→ S be a homomorphism of commutative rings
with units. Let (M,+, ·) be an R-module. Then the tensor product

MS := S ⊗RM

is called the extension of M with respect to j.

8.4 Remark. By lemma 8.2, we view S as an R-module. The exten-
sion of M is a tensor product of R-modules. Hence it has the structure
of an R-module, which for the moment shall be denoted by (MS ,+⊗, ·⊗).
(Don’t worry, once we have established the formal setup, we will omit
the subscripts.) Now we define an operation of S on MS on generators
t = a⊗m ∈MS , with a ∈ S and m ∈M , by

Λ : S ×MS → MS

(s, t) 7→ s ·Λ t := (s ·S a)⊗m.

8.5 Lemma. The triple (MS ,+⊗,Λ) from remark 8.4 is an S-module.

Proof. The triple (MS ,+⊗, ·⊗) is an R-module, so (MS ,+⊗) is an Abelian
group. The axioms of an S-module can be verified by direct computation.
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For example, let s, s′ ∈ S and let t = a⊗m ∈MS be a generating element,
with a ∈ S and m ∈M . Then one computes

(s+S s′) ·Λ t = ((s+S s
′) ·S a)⊗m

= (s ·S a +S s′ ·S a)⊗m
= (s ·S a)⊗m +⊗ (s′ ·S a)⊗m
= s ·λ t +⊗ s′ ·λ t.

This shows axiom ?? of definition ???, and the remaining axioms follow
analogously. �

8.6 Example. Consider the inclusion map j : R→ C as a homomorphism
of commutative rings with units. The operation λ of R on C with respect
to this homomorphism is just the usual multiplication of complex numbers
x ·λ z = j(x) ·C z := x · z, for x ∈ R and z ∈ C.

For some n ∈ N>0, consider V := Rn as an R-module. Then its extension
with respect to j is VC := C⊗RRn. We have already seen in example ?? that
as an R-module, this tensor product is isomorphic to Cn. Obviously, Cn is
a C-module, and VC is a C-module, too, by lemma 8.5. We want to see that
the two C-module structures are actually “the same”. More precisely, we
want to verify that the isomorphism between VC and Cn is an isomorphism
of C-modules.

If {e1, . . . , en} denotes the standard basis of Rn as R-module, then a basis of
VC over R is given by {1⊗ e1, i⊗ e1, . . . , 1⊗ en, i⊗ en} by proposition ??. A
basis of Cn over R is {e1, ie1, . . . , en, ien}. An isomorphism ψ : C⊗RRn → Cn
can be defined on the basis by ψ(ε⊗ej) := εej , for j = 1, . . . , n and ε ∈ {1, i}.
Now let z ∈ C. We compute for all elements of the basis of VC

ψ(z ·Λ (ε⊗ ei) = ψ((zε)⊗ ei) = zεei = z ·Λ ψ(ε⊗ ei).

This shows that VC = C⊗R Rn and Cn are isomorphic as C-modules.

8.7 Lemma. Let j : R → S be a homomorphism of commutative rings
with units. Let α : M →M ′ be a homomorphism of R-modules. Then

αS := id S ⊗ α : MS →M ′S

is a homomorphism of S-modules.
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Proof. By definition, αS is a homomorphism of R-modules. In particular, it
is a group homomorphism of the underlying Abelian groups, independently
whether they are considered as R-modules or as S-modules. So it only
remains to show that αS respects the multiplicative structures, too.

Let s ∈ S, and t ∈MS . Since we already know that the additive structures
are respected, we may assume without loss of generality that t is a generating
element. Let t = a⊗m, with a ∈ S and m ∈M . Then we compute

αS(s ·Λ t) = αS((sa)⊗m)
= id S ⊗ α((sa)⊗m)
= (sa)⊗ α(m)
= s ·Λ (a⊗ α(m))
= s ·Λ (id S ⊗ α(a⊗m))
= s ·Λ αS(t).

This shows that the map αS is indeed S-linear. �

8.8 Remark. Let j : R → S be a homomorphism of commutative rings
with units. There is an extension functor

S ⊗R • : (R-Mod) → (S-Mod)

M 7→ MS

M
α→M ′ 7→ MS

αS−→M ′S

8.9 Example. A major motivation for dealing with tensor products is the
fact that extensions provide a useful tool for dealing with torsion.

Consider a Z-module M . In general, the module M is not torsion free, i.e.
for the torsion submodule of M

T (M) := {m ∈M : ∃a ∈ Z r {0} such that am = 0}

holds T (M) 6= {0}. We claim that the extension MQ is always torsion free.
Indeed, MQ is a Q-vector space by lemma 8.5. Since any vector space admits
a basis, it is in particular a free Q-module. For any free Q-module holds
T (MQ) = {0}, compare exercise ??.

For example, let n ∈ N>0, and consider the Z-module M := Z/nZ⊕Z. Then
the extension of M is given by MQ ∼= Q.
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8.10 Lemma. Let j : R → S and j′ : S → T be homomorphisms of rings
with units. In particular, S is an R-module via j, and T is an S-module via
j′, as well as an R-module via the composition j′◦j. Then for all R-modules
M there is a natural isomorphism of T -modules

MT
∼= (MS)T .

Proof. The proof of the claim is straightforward and left as an exercise to
the reader. �
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