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8 Base extensions

Up to this point, we were discussing modules over a given commutative ring
and their tensor products. For a complete picture, we need to understand
what happens, when we vary the underlying rings.

8.1 Remark. Let (R,+rg, r) and (S, +gs,-s) be commutative rings with
multiplicative units. Let j : R — S be a homomorphism of commutative
rings with units, that is, we have j(1z) = 1g. We define an operation of R
on S by

A: RxS — S

(r,s) = ros:=j(r) ss.
8.2 Lemma. The triple (S,+g,\) from remark 8.1 is an R-module.
Proof. Straightforward, by direct verification of the axioms. O

8.3 Definition. Let j : R — S be a homomorphism of commutative rings
with units. Let (M, +,-) be an R-module. Then the tensor product

Mg :=S®r M

is called the extension of M with respect to j.

8.4 Remark. By lemma 8.2, we view S as an R-module. The exten-
sion of M is a tensor product of R-modules. Hence it has the structure
of an R-module, which for the moment shall be denoted by (Mg, +g, g)-
(Don’t worry, once we have established the formal setup, we will omit
the subscripts.) Now we define an operation of S on Mg on generators
t=a®m € Mg, with a € S and m € M, by

A SXMS — MS
(s,t) +— s-pat:=(s-ga)@m.

8.5 Lemma. The triple (Mg, +g,A) from remark 8.4 is an S-module.

Proof. The triple (Mg, +g, g) is an R-module, so (Mg, +g) is an Abelian
group. The axioms of an S-module can be verified by direct computation.
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For example, let s,s' € S and let t = a ® m € Mg be a generating element,
with a € S and m € M. Then one computes

(s+ss)at = ((s+s8)5a)@m

= (s'sa+s s -sa)®@m
(s:sa)@m +g (s'-sa)@m
sat +g 8 At

This shows axiom 77 of definition 777, and the remaining axioms follow
analogously. O

8.6 Example. Consider the inclusion map j : R — C as a homomorphism
of commutative rings with units. The operation A of R on C with respect
to this homomorphism is just the usual multiplication of complex numbers
xyxz=j)cz:=x-z forz € Rand z € C.

For some n € Ns5g, consider V := R™ as an R-module. Then its extension
with respect to j is Vg := C®rR™. We have already seen in example 77 that
as an R-module, this tensor product is isomorphic to C™. Obviously, C" is
a C-module, and V¢ is a C-module, too, by lemma 8.5. We want to see that
the two C-module structures are actually “the same”. More precisely, we
want to verify that the isomorphism between V¢ and C” is an isomorphism
of C-modules.

If {e1,...,e,} denotes the standard basis of R™ as R-module, then a basis of
Ve over R is given by {1®e1,i®eq,...,1®ey,i® ey} by proposition 77. A
basis of C" over R is {ey, €1, ..., en,ie,}. Anisomorphism ¢ : CQprR"™ — C”
can be defined on the basis by ¢(e®e;) :=ee;, for j =1,...,nand e € {1,i}.
Now let z € C. We compute for all elements of the basis of V¢

Y(z-pa(e®@e) =1((ze) R e) = zee; =z A Y(e® €;).

This shows that Vg = C ®g R™ and C" are isomorphic as C-modules.

8.7 Lemma. Let j: R — S be a homomorphism of commutative rings
with units. Let o : M — M’ be a homomorphism of R-modules. Then

ag:=idg®a: MS—>Mé

18 a homomorphism of S-modules.
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Proof. By definition, ag is a homomorphism of R-modules. In particular, it
is a group homomorphism of the underlying Abelian groups, independently
whether they are considered as R-modules or as S-modules. So it only
remains to show that ag respects the multiplicative structures, too.

Let s € S, and t € Mg. Since we already know that the additive structures
are respected, we may assume without loss of generality that ¢ is a generating
element. Let t = a ® m, with a € S and m € M. Then we compute

as((sa) @m)

= idg®a((sa) ®m)

= (sa) ® a(m)

= s-A(a®a(m))

= s-A(ilds®ala®m))
= s-pag(t).

as(s ‘A t)

This shows that the map ag is indeed S-linear. O

8.8 Remark. Let j : R — S be a homomorphism of commutative rings
with units. There is an extension functor

S®pre: (R-Mod) —  (S-Mod)
M — MS
M3 M — Ms2% M,

8.9 Example. A major motivation for dealing with tensor products is the
fact that extensions provide a useful tool for dealing with torsion.

Consider a Z-module M. In general, the module M is not torsion free, i.e.
for the torsion submodule of M

T(M):={me M : 3a € Z~ {0} such that am = 0}

holds T'(M) # {0}. We claim that the extension My is always torsion free.
Indeed, Mg is a Q-vector space by lemma 8.5. Since any vector space admits
a basis, it is in particular a free Q-module. For any free Q-module holds
T(Mg) = {0}, compare exercise 77?.

For example, let n € N+, and consider the Z-module M := Z/nZ®Z. Then
the extension of M is given by Mg = Q.
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8.10 Lemma. Let j: R — S and j' : S — T be homomorphisms of rings
with units. In particular, S is an R-module via j, and T is an S-module via
3, as well as an R-module via the composition j' oj. Then for all R-modules
M there is a natural isomorphism of T-modules

My = (MS)T‘

Proof. The proof of the claim is straightforward and left as an exercise to
the reader. O



