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7 Tensors and free modules

Throughout this section let (R, +,-) always be a commutative ring with a
multiplicative identity element.

7.1 Lemma. Let M and N be R-modules. Let M be a free R-module with
basis E = {e;}iecr C M, and let e, ..., e, € E be pairwise different elements
for some k € Nyg. Letnq,...,ng € N be elements such that Zle e;®n; =0
mMrN. Thenni =...=n; =0.

Proof. For any i € I, the i-th coordinate map
i M — R
m=3y .c;Ti€ > T
is a well-defined R-linear map. The map

oi: MxN — N
(n,m) +— pi(m)-n

is bilinear. Hence, by the universal property of the tensor product, there
exists a unique R-linear map ¢; : M ® N — N such that for all (m,n) €
M x N holds ¢;j(m ®n) = p;j(m) -n. In particular, for all i € {1,...,k} C I
we compute

k
0=i(0) = @(ij ®ng) = Z‘ﬁi(mj ®n;) = Zpi(mj) “nj=n;

as claimed. O

7.2 Proposition. Let M be a free R-module with basis (e;);cr. Let N be
an R-module. Then for anyt € M @ N there exists a unique family (n;)icr
with |{i € I : n; # 0} < oo such that

t= Z e; @ n,;.
iel
Proof. The existence of such a family follows since for the tensor product
T: M x N — M ® N holds

im(7) = spang{7(M x N)}
= spang{m®n: me M, ne N}
= spanp{d ;e riei®@n: Y ;.;rie; € M, n€ N}

The uniqueness follows from lemma 7.1. O
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7.3 Corollary. Let M and N be free R-modules with bases (e;)ic; and
(fj)jeu, respectively. Then (€i® f;) i j)erxs is a basis of M@g N. Moreover,
if M and N are finitely generated and free, then

rank(M ®pr N) = rank(M) - rank(N).
In particular, if (R,+,-) is a field, then dim(M ®g N) = dim(M) - dim(N).

Proof. Straightforward. O

7.4 Example. Consider M = N := C as a free module (i.e. vector space)
over R. Clearly, an R-basis of C is given by {1,:} C C. Thus

CorC=spanp{l®1,1®4,i®1,i®1i},
and dimR((C KR (C) =4.

7.5 Example. Consider M := R and N := C as free modules over R.
Let a : R — C be the inclusion map, and let 8 : C — C denote complex
conjugation. Note that 5 is R-linear.

On the basis {1®1,1®i} C R®rC we compute for the induced map a®5(1®
i)=a(l)®p(i) =10(—i) = —1®1, as well as a®f(1®1) = 1®1. Using the
isomorphism given by the choice of the basis {1®1,1®1,i®1,i®i} C CQrC
as in example 7.4, we obtain a commutative diagram

a®f

R ®r C CerC
R2 R4
PA

where the R-linear map ¢4 : R? — R?* is represented with respect to the
standard bases by the matrix

o O o
o

7.6 Lemma. Let M be a free R-modules with basis {e;}icr for some index
set I. Let N be an R-module, and let {n;};c;r C N be a family of elements
indexed by I, too. Then there exists a unique homomorphism of R-modules
@ : M — N such that for all i € I holds p(e;) = n;.
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Proof. Under the given assumptions, we construct a homomorphism ¢ :
M — N as follows. Let m € M. Since {e;}ier is a basis of M, there exists
a unique family {a;};er in R, with |[{i € I : a; # 0}| < oo, such that
m = icraie;. We define p(m) := >, ;a;n; € N. It is easy to see that ¢
is R-linear, and satisfies p(e;) = n; for all ¢ € I.

Let v : M — N be another homomorphism such that ¥ (e;) = n; for all
i € I. Then for any m = ) ,.;a;e; € M, using the R-linearity of both 1
and ¢, we compute (m) = Y . ;aib(e;) = > ;e aip(e;) = o(m). O
The above lemma 7.6 states, that for a free module, a homomorphism can
be uniquely defined by just specifying the images of the elements of a basis.
We will frequently make use of this fact.

7.7 Lemma. Let M and N be free R-modules with bases {e;}ic; and
{fi}jes, respectively. Let M be of finite rank. Then Hompg(M, N) is a free
R-module with basis {ec, 1, }(i.jyerxs, where for (i,j) € I x J the homomor-
phism e, ¢, is defined on the basis of M by

€eifj * M — N
fi, ifk=i
% = {o, if ki,

Proof. By lemma 7.6, the homomorphisms e, f; are well-defined by defin-
ing them on a basis.

Let a: M — N be a homomorphism of R-modules. Since {f;};c is a basis
of N, there exist for all k € I families {a?}jej in R with |{j € J: ag? #
0} < oo, such that alex) = >, affj. From the definition, we obtain
fi = €e; 1, (ex), if and only if 7 = &, and thus

k k k )
dffj = eepp(afer) = ec, g (afer) = alec, g (er).

i€l icl

J

=3 jeIxJ W5€e;,f;- Note that this sum is indeed finite, by the choice of

the families {a;?}jej , together with the fact that |I| < co. This shows that
{€eif; }ij)erx is a generating subset for Hompg(M, N).

Therefore a(ey) = Z(i,j)elxjai'ffei,fj(ek)- Again by lemma 7.6 this implies

To see that the family {e, fj}(i,j)e 7xJ is R-linearly independent, consider
a family {a;}jej'in R with [{(i,j) € I x J : aj # 0} < oo, such that
Q= Z(i?j)gx] azaehfj = 0. In particular, for all i € I we compute

0=ale) = Z aéaehfj(ei): Z ag-fj.

(3,5)eIxJ (4,g)eIxJ



J. Zintl: Part 3: The Tensor Produét TENSORS AND FREE MODULES

Since the basis {f;}jes is R-linearly independent, we must have aé =0 for
all j € J. O

7.8 Remark. Let M and N be free R-modules of finite ranks r,s € N
with bases {e1,...,e.} and {f1,..., fs}, respectively. Then, analogously to
the theory of vector spaces, we may use lemma 7.7 to identify homomor-
phisms o € Hompg(M, N) with matrices A, € Mat(m,n, R). Using the
notation from the proof of 7.7, an isomorphism of R-modules is given by

A: Hompr(M,N) — Mat(m,n, R)
a = Ao = (05)1<icr1<i<s

Recall that aé- € R has been defined as the j-th coordinate of the image of
the i-th basis vector a(e;).
With respect to this identification, the homomorphisms e, , correspond

precisely to the elementary matrices Ef , where all entries are 0, except the
entry in the ¢-th column and j-th line, which equals 1. Obviously, these
matrices form a basis of Mat(m, n, R).

7.9 Remark. In general, the claim of lemma 7.7 is not true, if the R-
module M is not of finite rank. There exist examples of free modules of
infinite rank, where the dual module is not free, see [?, II, §2.6].

7.10 Proposition. Let M, M’ N and N’ be free R-modules of finite ranks.
Then there is an isomorphism of R-modules

T : Homp(M,M') ® g Homg(N, N') — Homz(M ®r N,M' @ N')

such that for all « € Homg(M,M'), 8 € Homg(N,N'), me M andn € N
holds .
Tla® B)(m®n)=alm)® B(n).

Proof. Recall that there is a homomorphism of R-modules

T: Homp(M,M') x Homgr(N,N') — Hompg(M @ N,M' @r N’)
(Oé,ﬁ) — Q®B3:a®id]\ﬂ Old]\/[@ﬂ

which is easily seen to be bilinear. Hence the R-linear map T exists as
claimed.
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Consider bases {e;}icr, {fj}jer, {€p}tkex and {f;}eer, of M, M', N and
N', respectively. By lemma 7.7, they determine a basis {e, f, } @ j)erxs of
Hompg(M, M'), and a basis {Ee;,fz}(kl)EKXL of Homp(N, N’). Hence by
corollary 7.3, a basis of Hompg(M, M') @ g Homg(N, N') is given by {e., ; ®
Ee;,fé}(i,j,k,e)eIxeKxL-

On the other hand, again using corollary 7.3, we have bases {ei®e;€}(i7k)€ IXK
of M ®@p N and {f; ® fi}(jnesxr of M'® N'. By 7.7, they give a basis
{ec.oe, ;00 (k)erx x ik xr of Homp(M ®p N, M' @ N').

Let an index tuple (7, j, k,¢) € I x J x K x L be given. Consider an element
es ® e} of the basis of M @ N, for some s € [ and t € K. We compute

- fiof, ifs=it=k
T, ®6627f2)(68®e;5) = Ceirf (€S)®56§c7fé(eé) - { OJ ‘ otherwise.

By definition, we have
@ f, ifs=i t=k
Eeiwel, f0;(6s @ et) = { (])Cj f otherwise.
Thus the two homomorphism agree on a basis, and hence we have an iden-
tity T'(ge;,f; ® geﬁwfé) = Ee,0¢,f;0f, 10 particular, the homomorphism 7" is
surjective. Moreover, since T is bijectively mapping a basis to a basis, it is
also injective, and thus an isomorphism as claimed. O

7.11 Corollary. Let M and N be free R-modules of finite ranks. Then
there are isomorphisms

a) M*®rN = Hompg(M,N);
b) (M®rN)" = M*®rN*

Proof. Note that for any R-module M, there is a canonical isomorphism
Homp(R, M) = M. Using this, together with ??, we compute immediately
from proposition 7.10

HOIHR(M,N) HomR(M(X)RR,R@RN)
Hom r(M, R) @ Hom r(R, N)

M*®RN

11 11

as well as

(M ®gr N)* Hom r(M ®r N, R)
HOmR(M®RN,R®RR)
Hom r(M, R) ®g Hom r(N, R)
= M*®gr N*.

This proves the claims. O

111l
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7.12 Corollary. Let M, N and L be free R-modules of finite ranks. Then
there is an isomorphism

Hom (M, N ® L) = Hom r(M, N) @ L.

Proof. We obtain Hom gp(M,N ®r L) = Homgr(M ®r R,N ®r L) =
Hom p(M, N) @z Hom p(R, L) = Hom r(M, N) ®g L directly from propo-
sition 7.10. O

7.13 Proposition. Let M, M’', N and N’ be free R-modules of finite ranks.
Let oo : M — M’ and B : N — N’ be both injective homomorphisms of R-
modules. Then a ® : M @r N — M' @g N’ is injective, too.

Proof. Recall from 77 the identity a ® f = a®id y» o id yy ® . We will
only show that id jy ® [ is injective, if 5 is injective. The proof for a ® id p
is completely analogous, and taken together this implies the injectivity of
a® f.

Let ¢ € ker(id ps ® ). The modules M and N are free, so there exist bases
{eitier and {fj}jes, respectively. Thus there is a unique family {7;}; jyerx.s
in R, such that ¢ = Z(m)elxj rije; ® fj. We compute

0=idy ® B(t) =id »r @ B( Z rije; ® fj) = Z e ® B(rij fj)-

(i,9)eIxJ (4,5)eIxJ

For all i € I, lemma 7.1 now implies 5(ZjeJ7’ijfj) = 0. Since § is injective
by assumption, we must have ZjeJ rijfj = 0. But {f;};es is a basis, so we
obtain r;; = 0 for all (,5) € I x J. Therefore ¢t = 0. O

7.14 Remark. We have seen in 7?7 that for a given R-module M, the
functor M ®p e : (R-Mod) — (R-Mod) is right-exact. The functor is left-
exact, if the module M is free.



