
J. Zintl: Part 3: The Tensor Product7 TENSORS AND FREE MODULES

7 Tensors and free modules

Throughout this section let (R,+, ·) always be a commutative ring with a
multiplicative identity element.

7.1 Lemma. Let M and N be R-modules. Let M be a free R-module with
basis E = {ei}i∈I ⊆M , and let e1, . . . , ek ∈ E be pairwise different elements
for some k ∈ N>0. Let n1, . . . , nk ∈ N be elements such that

∑k
i=1 ei⊗ni = 0

in M ⊗R N . Then n1 = . . . = nk = 0.

Proof. For any i ∈ I, the i-th coordinate map

pi : M → R
m =

∑
i∈I riei 7→ ri

is a well-defined R-linear map. The map

ϕi : M ×N → N
(n,m) 7→ pi(m) · n

is bilinear. Hence, by the universal property of the tensor product, there
exists a unique R-linear map ϕ̃i : M ⊗ N → N such that for all (m,n) ∈
M ×N holds ϕ̃i(m⊗ n) = pi(m) · n. In particular, for all i ∈ {1, . . . , k} ⊆ I
we compute

0 = ϕ̃i(0) = ϕ̃i(
k∑
j=1

mj ⊗ nj) =
k∑
j=1

ϕ̃i(mj ⊗ nj) =
k∑
j=1

pi(mj) · nj = ni

as claimed. �

7.2 Proposition. Let M be a free R-module with basis (ei)i∈I . Let N be
an R-module. Then for any t ∈M ⊗N there exists a unique family (ni)i∈I
with |{i ∈ I : ni 6= 0}| <∞ such that

t =
∑
i∈I

ei ⊗ ni.

Proof. The existence of such a family follows since for the tensor product
τ : M ×N →M ⊗N holds

im(τ) = spanR{τ(M ×N)}
= spanR{m⊗ n : m ∈M, n ∈ N}
= spanR{

∑
i∈I riei ⊗ n :

∑
i∈I riei ∈M, n ∈ N}.

The uniqueness follows from lemma 7.1. �
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7.3 Corollary. Let M and N be free R-modules with bases (ei)i∈I and
(fj)j∈J , respectively. Then (ei⊗fj)(i,j)∈I×J is a basis of M⊗RN . Moreover,
if M and N are finitely generated and free, then

rank(M ⊗R N) = rank(M) · rank(N).

In particular, if (R,+, ·) is a field, then dim(M ⊗RN) = dim(M) · dim(N).

Proof. Straightforward. �

7.4 Example. Consider M = N := C as a free module (i.e. vector space)
over R. Clearly, an R-basis of C is given by {1, i} ⊂ C. Thus

C⊗R C = spanR{1⊗ 1, 1⊗ i, i⊗ 1, i⊗ i},

and dimR(C⊗R C) = 4.

7.5 Example. Consider M := R and N := C as free modules over R.
Let α : R → C be the inclusion map, and let β : C → C denote complex
conjugation. Note that β is R-linear.

On the basis {1⊗1, 1⊗i} ⊂ R⊗RC we compute for the induced map α⊗β(1⊗
i) = α(1)⊗β(i) = 1⊗(−i) = −1⊗i, as well as α⊗β(1⊗1) = 1⊗1. Using the
isomorphism given by the choice of the basis {1⊗1, 1⊗i, i⊗1, i⊗i} ⊂ C⊗RC
as in example 7.4, we obtain a commutative diagram

R⊗R C α⊗β //

∼=
��

C⊗R C
∼=
��

R2
ϕA

// R4

where the R-linear map ϕA : R2 → R4 is represented with respect to the
standard bases by the matrix

A :=


1 0
0 −1
0 0
0 0

 .

7.6 Lemma. Let M be a free R-modules with basis {ei}i∈I for some index
set I. Let N be an R-module, and let {ni}i∈I ⊆ N be a family of elements
indexed by I, too. Then there exists a unique homomorphism of R-modules
ϕ : M → N such that for all i ∈ I holds ϕ(ei) = ni.
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Proof. Under the given assumptions, we construct a homomorphism ϕ :
M → N as follows. Let m ∈ M . Since {ei}i∈I is a basis of M , there exists
a unique family {ai}i∈I in R, with |{i ∈ I : ai 6= 0}| < ∞, such that
m =

∑
i∈I aiei. We define ϕ(m) :=

∑
i∈I aini ∈ N . It is easy to see that ϕ

is R-linear, and satisfies ϕ(ei) = ni for all i ∈ I.

Let ψ : M → N be another homomorphism such that ψ(ei) = ni for all
i ∈ I. Then for any m =

∑
i∈I aiei ∈ M , using the R-linearity of both ψ

and ϕ, we compute ψ(m) =
∑

i∈I aiψ(ei) =
∑

i∈I aiϕ(ei) = ϕ(m). �

The above lemma 7.6 states, that for a free module, a homomorphism can
be uniquely defined by just specifying the images of the elements of a basis.
We will frequently make use of this fact.

7.7 Lemma. Let M and N be free R-modules with bases {ei}i∈I and
{fj}j∈J , respectively. Let M be of finite rank. Then HomR(M,N) is a free
R-module with basis {εei,fj}(i,j)∈I×J , where for (i, j) ∈ I × J the homomor-
phism εei,fj is defined on the basis of M by

εei,fj : M → N

ek 7→
{
fj , if k = i
0, if k 6= i.

Proof. By lemma 7.6, the homomorphisms εei,fj are well-defined by defin-
ing them on a basis.

Let α : M → N be a homomorphism of R-modules. Since {fj}j∈J is a basis
of N , there exist for all k ∈ I families {akj }j∈J in R with |{j ∈ J : akj 6=
0}| < ∞, such that α(ek) =

∑
j∈J a

k
j fj . From the definition, we obtain

fj = εei,fj (ek), if and only if i = k, and thus

akj fj = εek,fj (a
k
j ek) =

∑
i∈I

εei,fj (a
k
j ek) =

∑
i∈I

aijεei,fj (ek).

Therefore α(ek) =
∑

(i,j)∈I×J a
i
jεei,fj (ek). Again by lemma 7.6 this implies

α =
∑

(i,j)∈I×J a
i
jεei,fj . Note that this sum is indeed finite, by the choice of

the families {akj }j∈J , together with the fact that |I| <∞. This shows that
{εei,fj}(i,j)∈I×J is a generating subset for HomR(M,N).

To see that the family {εei,fj}(i,j)∈I×J is R-linearly independent, consider
a family {aij}j∈J in R with |{(i, j) ∈ I × J : aij 6= 0}| < ∞, such that

α :=
∑

(i,j)∈I×J a
i
jεei,fj = 0. In particular, for all i ∈ I we compute

0 = α(ei) =
∑

(i,j)∈I×J

aijεei,fj (ei) =
∑

(i,j)∈I×J

aijfj .
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Since the basis {fj}j∈J is R-linearly independent, we must have aij = 0 for
all j ∈ J . �

7.8 Remark. Let M and N be free R-modules of finite ranks r, s ∈ N<0

with bases {e1, . . . , er} and {f1, . . . , fs}, respectively. Then, analogously to
the theory of vector spaces, we may use lemma 7.7 to identify homomor-
phisms α ∈ HomR(M,N) with matrices Aα ∈ Mat(m,n,R). Using the
notation from the proof of 7.7, an isomorphism of R-modules is given by

A : HomR(M,N) → Mat(m,n,R)
α 7→ Aα := (aij)1≤i≤r,1≤j≤s

Recall that aij ∈ R has been defined as the j-th coordinate of the image of
the i-th basis vector α(ei).

With respect to this identification, the homomorphisms εei,fj correspond

precisely to the elementary matrices Eji , where all entries are 0, except the
entry in the i-th column and j-th line, which equals 1. Obviously, these
matrices form a basis of Mat(m,n,R).

7.9 Remark. In general, the claim of lemma 7.7 is not true, if the R-
module M is not of finite rank. There exist examples of free modules of
infinite rank, where the dual module is not free, see [?, II, §2.6].

7.10 Proposition. Let M,M ′, N and N ′ be free R-modules of finite ranks.
Then there is an isomorphism of R-modules

T̃ : HomR(M,M ′)⊗R HomR(N,N ′)→ HomR(M ⊗R N,M ′ ⊗R N ′)

such that for all α ∈ HomR(M,M ′), β ∈ HomR(N,N ′), m ∈M and n ∈ N
holds

T̃ (α⊗ β)(m⊗ n) = α(m)⊗ β(n).

Proof. Recall that there is a homomorphism of R-modules

T : HomR(M,M ′)×HomR(N,N ′) → HomR(M ⊗R N,M ′ ⊗R N ′)
(α, β) 7→ α⊗ β := α⊗ idN ′ ◦ idM ⊗ β

which is easily seen to be bilinear. Hence the R-linear map T̃ exists as
claimed.
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Consider bases {ei}i∈I , {fj}j∈J , {e′k}k∈K and {f ′`}`∈L of M , M ′, N and
N ′, respectively. By lemma 7.7, they determine a basis {εei,fj}(i,j)∈I×J of
HomR(M,M ′), and a basis {εe′k,f ′`}(k,`)∈K×L of HomR(N,N ′). Hence by
corollary 7.3, a basis of HomR(M,M ′)⊗RHomR(N,N ′) is given by {εei,fj ⊗
εe′k,f

′
`
}(i,j,k,`)∈I×J×K×L.

On the other hand, again using corollary 7.3, we have bases {ei⊗e′k}(i,k)∈I×K
of M ⊗R N and {fj ⊗ f ′`}(j,`)∈J×L of M ′ ⊗ N ′. By 7.7, they give a basis
{εei⊗e′k,fj⊗f ′`}(i,j,k,`)∈I×J×K×L of HomR(M ⊗R N,M ′ ⊗R N ′).
Let an index tuple (i, j, k, `) ∈ I ×J ×K×L be given. Consider an element
es ⊗ e′t of the basis of M ⊗R N , for some s ∈ I and t ∈ K. We compute

T̃ (εei,fj⊗εe′k,f ′`)(es⊗e
′
t) = εei,fj (es)⊗εe′k,f ′`(e

′
t) =

{
fj ⊗ f ′`, if s = i, t = k
0, otherwise.

By definition, we have

εei⊗e′k,fj⊗f
′
`
(es ⊗ e′t) =

{
fj ⊗ f ′`, if s = i, t = k
0, otherwise.

Thus the two homomorphism agree on a basis, and hence we have an iden-
tity T̃ (εei,fj ⊗ εe′k,f ′`) = εei⊗e′k,fj⊗f

′
`
. In particular, the homomorphism T̃ is

surjective. Moreover, since T̃ is bijectively mapping a basis to a basis, it is
also injective, and thus an isomorphism as claimed. �

7.11 Corollary. Let M and N be free R-modules of finite ranks. Then
there are isomorphisms

a) M∗ ⊗R N ∼= HomR(M,N);

b) (M ⊗R N)∗ ∼= M∗ ⊗R N∗.

Proof. Note that for any R-module M , there is a canonical isomorphism
HomR(R,M) ∼= M . Using this, together with ??, we compute immediately
from proposition 7.10

HomR(M,N) ∼= HomR(M ⊗R R,R⊗R N)
∼= HomR(M,R)⊗R HomR(R,N)
∼= M∗ ⊗R N

as well as

(M ⊗R N)∗ = HomR(M ⊗R N,R)
∼= HomR(M ⊗R N,R⊗R R)
∼= HomR(M,R)⊗R HomR(N,R)
= M∗ ⊗R N∗.

This proves the claims. �
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7.12 Corollary. Let M , N and L be free R-modules of finite ranks. Then
there is an isomorphism

HomR(M,N ⊗R L) ∼= HomR(M,N)⊗R L.

Proof. We obtain HomR(M,N ⊗R L) ∼= HomR(M ⊗R R,N ⊗R L) ∼=
HomR(M,N) ⊗R HomR(R,L) ∼= HomR(M,N) ⊗R L directly from propo-
sition 7.10. �

7.13 Proposition. Let M,M ′, N and N ′ be free R-modules of finite ranks.
Let α : M → M ′ and β : N → N ′ be both injective homomorphisms of R-
modules. Then α⊗ β : M ⊗R N →M ′ ⊗R N ′ is injective, too.

Proof. Recall from ?? the identity α ⊗ β = α ⊗ idN ′ ◦ idM ⊗ β. We will
only show that idM ⊗β is injective, if β is injective. The proof for α⊗ idN ′

is completely analogous, and taken together this implies the injectivity of
α⊗ β.

Let t ∈ ker(idM ⊗ β). The modules M and N are free, so there exist bases
{ei}i∈I and {fj}j∈J , respectively. Thus there is a unique family {rij}(i,j)∈I×J
in R, such that t =

∑
(i,j)∈I×J rijei ⊗ fj . We compute

0 = idM ⊗ β(t) = idM ⊗ β(
∑

(i,j)∈I×J

rijei ⊗ fj) =
∑

(i,j)∈I×J

ei ⊗ β(rijfj).

For all i ∈ I, lemma 7.1 now implies β(
∑

j∈J rijfj) = 0. Since β is injective
by assumption, we must have

∑
j∈J rijfj = 0. But {fj}j∈J is a basis, so we

obtain rij = 0 for all (i, j) ∈ I × J . Therefore t = 0. �

7.14 Remark. We have seen in ?? that for a given R-module M , the
functor M ⊗R • : (R-Mod) → (R-Mod) is right-exact. The functor is left-
exact, if the module M is free.
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