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5 Multilinear Maps

An invaluable feature of vector spaces over the field of real numbers is that
they admit inner products. Geometric concepts, such as orthogonality or
norm, can be introduced with respect to a given inner product. The defini-
tion of multilinear maps generalizes both inner products and linear maps in
a natural way.

Throughout this section, let (R,+, ·) always denote a commutative ring with
a multiplicative identity element. For an R-module (M,+, ·) we will simply
write M .

5.1 Definition. Let p ∈ N>0. Let M1, . . . ,Mp and N be R-modules. A
p-linear map from M1 × . . .×Mp to N is a map

ϕ : M1 × . . .×Mp → N

such that for all (m1, . . . ,mp) ∈ M1 × . . . ×Mp and for all i = 1, . . . , p the
map

ϕim1,...,mp
: M1 × . . .×Mp → N

m 7→ ϕ(m1, . . . ,mi−1,m,mi+1, . . . ,mp)

is a homomorphism of R-modules.

5.2 Remark. a) An 1-linear map ϕ : M1 → N is a homomorphism
of R-modules, or equivalently, an R-linear map. A 2-linear map is called
bilinear. For a general p ∈ N>0, a p-linear map is called multilinear.

b) A map ϕ : M1 ×M2 → N is bilinear, if and only if for i = 1, 2, for all
mi,m

′
i ∈Mi and for all r ∈ R hold

(1) ϕ(m1 +m′1,m2) = ϕ(m1,m2) + ϕ(m′1,m2)
(2) ϕ(r ·m1,m2) = r · ϕ(m1,m2)
(3) ϕ(m1,m2 +m′2) = ϕ(m1,m2) + ϕ(m1,m

′
2)

(4) ϕ(m1, r ·m2) = r · ϕ(m1,m2).

5.3 Example. Let (R,+, ·) = (K,+, ·) be a field. Consider the vector
space V := Kn of dimension n > 0 over K. For typographical reasons, we
use throughout the “horizontal” notation for a vector v ∈ Kn, so that the
corresponding column vector is written as the transpose tv.
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a) The standard inner product

〈., .〉 : Kn ×Kn → K
(u, v) 7→ 〈u, v〉 := u ·t v

is a bilinear map.

b) The determinant map det : Mat(n, n,K) = (Kn)n → K, considered as a
map in the columns of the respective matrices,

det : Kn × . . .×Kn → K
(v1, . . . , vn) 7→ det(v1, . . . , vn)

is an n-linear map.

5.4 Notation. Let p ∈ N>0. Let M1, . . . ,Mp and N be R-modules. We
denote by

LR(M1, . . . ,Mp;N) := {ϕ : M1 × . . .×Mp → N p-linear}

the set of all p-linear maps from M1 × . . . ×Mp to N . In particular, for
M1 = . . . = Mp =: M , we write for p-linear maps from the p-fold direct
product of M to N simply

LpR(M ;N) := LR(M × . . .×M ;N).

5.5 Remark. a) The triple (LR(M1, . . . ,Mp;N),+p−w, ·p−w) is again an
R-module, with respect to the point-wise defined composition and operation.

b) For p = 1, we clearly have LR(M ;N) = L1
R(M ;N) = HomR(M,N). In

the special case N = R we obtain the dual module L1
R(M ;R) = M∗.

5.6 Exercise. Show that for any p ∈ N>0 there is an isomorphism of
R-modules

LpR(R;R) ∼= R.

5.7 Proposition. Let M,N and L be R-Modules. Then there is an iso-
morphism of R-modules

LR(M,N ;L) ∼= HomR(M,HomR(N,L)).

Proof.

�
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5.8 Corollary. Let M and N be R-modules. Then there is an isomor-
phism of R-modules

LR(M,N ;R) ∼= HomR(M,N∗).

Proof. Immediately from proposition 5.7, since N∗ = HomR(N,R). �

5.9 Example. To get an intuitive idea of the statement in corollary 5.8,
we consider a standard problem from physics.

We think of a physical object as a point in real-world space, so its position
is given by a vector ~x ∈ R3 =: V . Suppose that a constant force is present
(e.g. gravitation). The force has a magnitude and a direction, so it is also
represented by a vector ~f ∈ R3 =: F . Note that from a physicist’s point of
view V 6= F (for a start, one is measured in “meters” m, while the other is
measured in “Newton” N = kg·m

s2
).

Moving the physical object involves work (measuring the change of its po-
tential energy). The amount of work while moving our object from ~x to
~x + ~y is denoted by W (~f, ~y) ∈ R. Note that negative work occurs, when
energy is released (think of dropping a stone).

Clearly, doubling the force doubles the work involved. Moreover, forces are
additive: if they act in different directions, they may cancel each other out.
Mathematically, we have an R-linear map

w~y : F → R
~f 7→ W (~f, ~y)

computing how much work is needed to move the object a fixed distance ~y,
depending on varying forces acting.

On the other hand, we may wish to compute the work needed to move
the object an arbitrary distance ~y in the presence of a constant force ~f .
Obviously, the longer the distance is, the more work is needed. Again, we
have an R-linear map

w~f
: V → R

~y 7→ W (~f, ~y).

In summary, we found a bilinear map W : F × V → R. The formula for
computing the work in physics is simply

W = 〈~f, ~y〉
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where 〈~f, ~y〉 denotes the standard inner product on R3, up to physical mea-
suring units.

Let us relate this to corollary 5.8. Note that for any ~f ∈ F holds w~f
∈

HomR(V,R) = V ∗. As a bilinear map, we have W ∈ LR(F, V ;R). It corre-
sponds uniquely to the map ~f 7→ wf in Hom(F, V ∗).

5.10 Lemma. Let M be a free R-module of dimension n < ∞, together
with a basis E = {e1, . . . , en} ⊂M . Then there is a canonical isomorphism
of R-modules

L2
R(M ;R) ∼= Mat(n, n,R).

Proof. Let ϕ ∈ L2
R(M ;R). We define a matrix Aϕ := (aij)1≤i,j≤n ∈

Mat(n, n,R) by
aij := ϕ(ei, ej).

With this notation, we obtain a map

α : L2
R(M ;R) → Mat(n, n,R)
ϕ 7→ Aϕ

It is easy to verify for two bilinear maps ϕ,ψ : M ×M → R and elements
r ∈ R the equations

Aϕ+ψ = Aϕ +Aψ and Arϕ = rAϕ.

Thus α is a homomorphism of R-modules. It is even an isomorphism, where
for a matrix A ∈ Mat(n, n,R) the image ϕA := α−1(A) under the inverse
homomorphism is given by

ϕA : M ×M → R
(m1,m2) 7→ m1 ·A ·t m2

�

Note that the isomorphism of lemma 5.10 is canonical only because a basis
E is given a priory. In general, for a free R-module of finite dimension, all
we can say is that such an isomophism always exists.

5.11 Lemma. Let p ∈ N>0. Let M1, . . . ,Mp and N,N ′ be R-modules,
and let ϕ : M1 × . . . ×Mp → N be a p-linear map. Let β : N → N ′ be a
homomorphism of R-modules. Then β ◦ϕ : M1× . . .×Mp → N ′ is p-linear.
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Proof. Straightforward. �

5.12 Remark. In the special case M1 = . . . = Mp =: M , lemma 5.11
implies that for any homomorphism β : N → N ′ of R-modules, there is a
map

β∗ : LpR(M ;N) → LpR(M ;N ′)
ϕ 7→ β ◦ ϕ

which is in fact a homomorphism of R-modules. We thus obtain for any
given R-module M a (covariant) functor

LpR(M, •) : (R-Mod) → (R-Mod)

N 7→ LpR(M ;N)

β 7→ β∗

The verification of the details is left to the reader.

5.13 Exercises. a) Let p ∈ N>0, and let σ ∈ Σp be a permutation of the
set {1, . . . , p}. Let M1, . . . ,Mp and N be R-modules. Then there exists a
natural isomorphism of R-modules

LR(M1, . . . ,Mp;N) ∼= LR(Mσ(1), . . . ,Mσ(p);N).

b) LetM1, . . . ,Mp andM ′1 andN be R-modules. Then there exists a natural
isomorphism of R-modules

LR(M1 ⊕M ′1,M2, . . . ,Mp;N) ∼= LR(M1, . . . ,Mp;N)⊕ LR(M ′1, . . . ,Mp;N).

c) Let M1,M2 and N be R-modules, with submodules M ′1 ⊆M1 and N ′ ⊆
N . Let ϕ ∈ LR(M1,M2;N) be a bilinear map. Suppose that for all m′1 ∈M ′1
and all m2 ∈M2 holds ϕ(m′1,m2) ∈ N ′. Then the map

ϕ : M1/M
′
1 ×M2 → N/N ′

([m1],m2) 7→ [ϕ(m1,m2)]

is well-defined and bilinear.

5.14 Remark. Let ϕ : M1×. . .×Mp → N be a p-linear map of R-modules.
By looking a examples, it is easy to see that in general neither is ϕ−1({0})
a submodule of M1 × . . .×Mp, nor is ϕ(M1 × . . .×Mp) a submodule of N .

5.15 Definition. Let ϕ : M1 × . . . ×Mp → N be a p-linear map of R-
modules. The image of ϕ is the smallest submodule of N , which contains
the set-theoretic image of ϕ

im(ϕ) := span(ϕ(M1 × . . .×Mp)).
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