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11 The symmetric algebra

Throughout this section let (R, +,-) always be a commutative ring with a
multiplicative identity element, and let M be an R-module.

11.1 Definition. Let p € Nyg, and let N be an R-module. A p-linear
map ¢ : MP — N is called symmetric, if for all o € 3, holds

poo = ¢.
11.2 Notation. The R-module of symmetric p-linear maps is denoted by
Symh, (M, N) = {¢: MP — N : ¢ symmetric}
We define a submodule of the of the R-module @Q” M by

YP(M) := spang {t — 7(t) : t € "M, 7 € ¥, transposition} .

11.3 Remark. a) Let ¢t € ®” M, and let o € ¥, be an arbitrary permu-
tation. Then t — o(t) € YP(M). Indeed, we can write 0 =1 0...07, as a
composition of finitely many transpositions. We compute inductively

t—o(t) = (t—7(t)+ (Ta(t) — Tn—10m(t)) + ...
ot (mmo...omp(t) —Tiomo...omy(t)) € YP(M).

b) The submodule Y?(M) is
generating element t — 7(¢
T € ), we have o(t — 7(t)
of YP(M) by a).

p-invariant. Indeed, let o € ¥,,. Then for any
YP(M), with t € @ M and a transposition

by
S
=0(t) —ocoTo0o (o(t)), which is an element

)
)

11.4 Definition. Let M be an R-module, and let p € Ny3. The R-module
quotient

SPM == QPM/YP(M)
is called the p-th symmetric product of M. For equivalence classes, we use

the notation
miV...Vmy:=[m ®...0m,| € SPM.

Any element of SPM, which can be written in this way, shall be called
decomposable. The canonical quotient map of the p-th symmetric product
is written on decomposable elements as

Ll XY M — SPM
me...my = miV...Vmy

1
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By the construction of the p-th symmetric product as a quotient, we clearly
have
SPM = spang{m1 V...Vmy,: (my,...,mp) € MP}.

The rules for adding and multiplying elements in SPM are analogous to
those for elements in @ M.

11.5 Remark. Note that the composed map 79, defined as the composi-

tion
TS
/\
Mp f) ®pM ?) SPM
is p-linear and symmetric. Indeed, let m = (mq,...,mp) € MP, and let

o € ¥, be a permutation. By remark 11.3, we have in Q¥ M the inclusion
m®...0my—o(m ®...0m,) € YP(M). Hence 7°(m) — 7° o o(m) =
0 € SPM, as claimed.

11.6 Proposition. Let M be an R-module, and let p € Nsg. The p-th
symmetric power of M is up to isomorphism uniquely characterized by the
following universal property.

For any R-module Z, and any symmetric p-linear map ¢ : MP — Z, there
exists a unique R-linear map @ such that the diagram

mMr—¥ o7
| 5
@

commutes.
Proof. Compare proposition 77. a

11.7 Remark. As before, we obtain a functor

SP: (R-Mod) — (R-Mod)
M — SPM
« — SPo

where for any homomorphism « : M — M’ of R-modules and for all gener-
ating elements m; V...V m, € SPM holds

SPa(mi V...Vmy) =a(mi)V...Valm,) € SPM'.
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11.8 Proposition. Let M be a free R-module of rank n < oo. Let p €
Nso. Then SPM is a free R-module of rank

n+p—1>

rank(SPM) = < ;

Proof.  Let {ej}i=1,.. ¢, be a basis of M. By construction, SPM is generated
by (e, V...V e€i,)i<i,..iy<n- Using the symmetry property , it is enough
to consider ordered indices, so that {e;; V...V e;, }1<ij<..<i,<n IS a gener-
ating family. It is easy combinatorics to see that this family has (”+£ _1)
members, so that rank(SPM) < (”+£_1). A standard proof shows the linear
independence, so that {e;; V...V e;, }1<ij<..<i,<n is indeed a basis. O

11.9 Example. Let M be a free R-module with a finite basis {e;}i=1,. n.
Let p € Nyg. Consider the ring of polynomials R[X1,...,X,] as an R-

module. The submodule of homogeneous polynomials of degree p is given
by

Ry[X1,..., X, = spanR{Xfl-...-Xg" cdy,...,dy €N dy+...+d, = p}.

We define a p-linear map by

©Pp : MP — R, X1,...,Xn]
(m1,...,mp) — (Z?:l T X5) (Z?:l 7, X;)
where for any ¢ = 1,...,p the element m; € M is written with respect to

the basis as R-linear combination m; = r;1e1 + ...+ 7; ne,. Since the ring
of polynomials is commutative, the map ¢, is symmetric. By the universal
property of the p-th symmetric product, there exists a unique R-linear map
@p : SPM — R[X;,...,X,] such that for all decomposable elements m; V
...V my, € SPM holds

Gp(m1 V... Vmy,) = pp(my,...,my).

In particular, for any 1 <'y,...,i, <nholds Xy -...-X;, = ¢p(ei, V... Vey,),
which implies, that the map ¢, is surjective. One easily computes

n+p-—1

rang(Rpy[X1,...,Xy]) = < ﬁ )

Together with our arguments from the proof of proposition 11.8, we find
that ¢, is an isomorphism of free R-modules

SPM = Ry[X1,...,X,).
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Note that the direct sum R[X1,...,X,] = @,ey Ra[X1,. .., Xn] is more
than just an R-module: it has even the structure of an R-algebra. This
motivates the following definition.

11.10 Definition. Let M be an R-module. The symmetric algebra of M
is given as an R-module by

SM = B s M,
peN
where S°M := R.
11.11 Remark. As before, one shows that there exists a unique R-algebra

structure ”V” on SM, such that the direct sum 7% : Q M — SM of the
canonical quotient maps is a homomorphism of R-algebras.

In particular, if a € SPM and o’ € SIM are given as a = 7°(t) and o’ =
75(t') for some t € @ M and ' € ®? M, then their algebra product equals

aVvad = m(tet).

11.12 Proposition. Let M be an R-module. Then its symmetric algebra
SM is a graded commutative R-algebra with multiplicative unit 1g.

Proof.  Straightforward. O

11.13 Proposition. Let M be a free R-module of rank n < oo. Then
there exists an isomorphism of R-algebras

SM = R[Xy,...,Xp]
Proof. For the underlying isomorphism of R-modules see example 11.9. We

leave it as an exercise to verify its compatibility with the respective algebra
multiplications. O

11.14 Remark. Let L, M, N be free R-modules such that M = N & L.
Then there exists an isomorphism of graded R-algebras

SM = SN ® SL.
In particular, for all k& € N holds

SkM @ SPN @ SIL.
p+q=Fk
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12 Derivations and differentials

An important application of tensor products in general, and alternating
products in particular, is found in differential geometry and in physics: the
theory of differentials is essential for advanced calculus. We want to illustrate
this in one elementary example.

Throughout this section let (R, +,-) always be a commutative ring with
a multiplicative identity element. Let (A,+,\,0) be a commutative and
associative R-algebra with a unital element 14. In particular, (A,+,0) is
a commutative ring with a multiplicative identity element. Let M be an
A-module, an thus an R-module, too.

12.1 Definition. An R-linear map D : A — M is called a derivation, if it
satisfies for all a,b € A the Leibniz rule:

D(ab) = aD(b) + bD(a).

12.2 Remark. We denote by Derg(A, M) the set of all derivations from
A to M. It is a submodule of the R-module Hompg (A, M).

12.3 Example. Let I C R be an open interval of real numbers. For a
natural number n € N, let C"(I) denote the set of all n-times continuously
differentiable functions f : I — R. Note that C"(I) has the structure of
a commutative and associative R-algebra, where “4” and “” are defined
point-wise. The constant function 1 is a unital element in C™(I).

Moreover, for f € C"*1(I) and g € C™(I) holds f - g € C™(I). In this way,
M := C™(I) becomes a module over A := C"*!(I). Consider the map

D: oY1) — c"(I)
f — g—f:.

Clearly, differentiation is R-linear, and it satisfies the product rule. Thus D
is a derivation.

12.4 Lemma. Let D: A — M be a derivation. Then D(14) = 0p.

Proof. From the Leibniz rule, we compute for the unital element D(14) =
D(1g-14)=14-D(14)+14-D(14), and thus D(14) = 0. O
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12.5 Definition. Let 4 be an A-module. A derivation d : A — Q4 is
called a universal derivation, if it satisfies the following universal property:

For any A-module M, and any derivation D : A — M, there exists a unique
homomorphism of A-modules ¢ : 24 — M, such that the diagram

A—LP o m

| A

Q4

commutes.

12.6 Fact. Universal derivations exist, and they are uniquely determined
up to isomorphisms. Moreover, for any universal derivation d : A — Qg
holds Q4 = spana{d(a): a € A}.

12.7 Example. Consider the algebra of polynomials k[z] over a field k.
Let d : k[x] — Q4[,] denote a universal derivation.

As a module over k, a generating family for k[z] is given by {z"},en. By
lemma 12.4, for n = 0 holds d(z°) = 0. For n > 2, we compute inductively
d(z"™) = 2" d(z) + zd(z" 1) = ... = n- 2" ld(z).

Using the R-linearity of d, we obtain for any f € k[z] the formula

atp) =L aa),

where % denotes the formal differentiation of a polynomial. This implies
the equality spany,|{d(f) : f € k[z]} = k[z] - d(z). Therefore by 12.6, the
k[x]-module €, is free of rank 1. A basis element is given by dz := d(x),
and we may write

12.8 Notation. Let d : A — Q4 be a universal derivation. We call Q4
the A-module of Kdhler differentials. For p € N>o we write

QY = A\ Qq

together with Q0 := A and QY := Q4.
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12.9 Fact.  There exists a family of R-linear maps d, : Q) — Qﬁ;rl
for p € N such that for all p,g € N, all w € Q) and all n € Q9 holds
dp+10d, =0, and

dprq(WAD) =dpw A+ (=1)Pw Adyny € Q5T

The family {dp}pen is called the de Rham complez of Q4.

12.10 Example. Consider the ring of polynomials A := R[xz,y, z] as an
R-algebra. Similarly to example 12.7 one obtains for the module of Kéhler
differentials Q4 a free A-module of rank 3, with basis {dz, dy, dz}.

Because p-th exterior powers of €24 vanish for p > 3, the de Rham complex
can be written as

d d d
Q) =5 Q) — Q4 5 Q% — 0.

Let us compute this maps explicitly for all p = 0,1,2. For p = 0, the R-
linear map dp : Q% — QY is just the universal derivation. One can show
this to be the map

Q4

%
e} 0 0,
> yidx—ka—fdy—ka—idz.

d: A
f y

In coordinates, i.e. with respect to the basis {dz,dy,dz} of QY this map
can be written as

of
ox

do(f)= | % | = grad(f).

of
0z

In other words, the evaluation of universal derivation in some f € A is given
by the gradient of f. For dy : 9}4 — Q?q one computes for a general element
fdz + gdy + hdz € QY using the formulae from 12.9

di(fdx + gdy + hdz) = di(fdz) + di(gdy) + d1(hdz)
(df Adz+ (=1)°f Adydg) + ...
df Ndx +dg Ndy+ dh A dz
= ($do+ Gldy+ GLdz) nda + ...

0 0,
(—75+8—g)da:/\dy+...

We leave it to the reader to fill in the dots. It gets more readable when we
use the notation in coordinates with respect to the bases {dz,dy, dz} of Q4
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and {dy A dz,dz A dx,dz A dy} of 9124:

f +(’9y f
di| g = %—% =:rot| g
h f_|_8m h

This is known as the rotation of the triple of functions (f, g, h). Analogously,
we obtain for dy : QQA — QSA for a general element

do(fdy N dz + gdz A\ dx + hdzx A dy) =
—df/\dy/\dz+dgAdz/\d:B+dh/\d$Ady
( dx+afdy+afdz)/\dy/\dz+...
(3f+af+ 9V A dy A dz.

With respect to the bases {dyAdz,dz \dz,dz Ady} of Q% and {dz AdyAdz}
of Q3 we get

f f
da| g 8f + == of + == of =:div| g¢
h T ox oy 0z h

This is the definition of the divergence of the triple of functions (f, g, h)

12.11 Proposition. The following identities hold:

rotograd = 0
divorot = 0.

Proof. For the de Rham complex holds d o d = 0.



