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10 The exterior algebra

Throughout this section let (R,+, ·) always be a commutative ring with a
multiplicative identity element, and let M be an R-module.

10.1 Definition. Let p ∈ N≥2. Let N be an R-module. A p-linear map
ϕ : Mp → N is called alternating, if for all (m1, . . . ,mp) ∈Mp the following
implication holds:

If there exist i, j ∈ {1, . . . , p} with i 6= j such that mi = mj holds, then
ϕ(m1, . . . ,mp) = 0.

10.2 Notation. We define the R-module of alternating p-linear maps by

AltpR(M,N) := {ϕ : Mp → N : ϕ alternating }.

10.3 Example. Let (R,+, ·) = (K,+, ·) be a field, and let M = Kn. As
vector spaces overK, we identifyMn ∼= Mat(n, n,K). Then the determinant
map det : MatK(n, n)→ K is alternating.

10.4 Definition. Let M be an R-module. For p ∈ N≥2 we define a
submodule of

⊗pM by

Np(M) := spanR{m1 ⊗ . . .⊗mp ∈
⊗pM : ∃i 6= j s.th. mi = mj}.

The R-module quotient ∧pM :=
⊗pM /Np(M)

is called the p-th exterior power of M , or the p-th alternating power of M .
For equivalence classes, we use the notation

m1 ∧ . . . ∧mp := [m1 ⊗ . . .⊗mp] ∈
∧pM.

10.5 Remark. The composed map τa, defined by

Mp
τ
//

τa

((⊗pM π
//
∧pM

is p-linear and alternating. Indeed, for an element (m1, . . . ,mp) ∈Mp with
mi = mj for some i 6= j, we have τ(m1, . . . ,mp) ∈ Np(M), so that π ◦
τ(m1, . . . ,mp) = 0 ∈

∧pM .
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10.6 Remark. As a quotient of the p-fold tensor product, the alternating
product inherits rules for computation analogous to those listed in ??. In
the case p = 2, we have for all m,m′,m′′ ∈M and r ∈ R the equalities

(1) (rm) ∧m′ = m ∧ (rm′)
(2) (m+m′) ∧m′′ = m ∧m′′ +m′ ∧m′′
(3) m ∧ (m′ +m′′) = m ∧m′ +m ∧m′′
(4) m ∧ 0 = 0
(5) 0 ∧m = 0.

Analogous formulae hold for all p ∈ N≥2. We have furthermore

(6) m1 ∧ . . . ∧mp = 0 if mi = mj for some 1 ≤ i, j ≤ p with i 6= j.

10.7 Proposition. Let M be an R-module. The p-th exterior power of M
is up to isomorphism uniquely determined by the following universal prop-
erty.

For any R-module Z, and any alternating p-linear map ϕ : Mp → Z, there
exists a unique p-linear map ϕ̂ such that the diagram

Mp ϕ //

τa

��

Z

∧pM

ϕ̂

<<

commutes.

Proof. Follows from the universal property of the tensor product. �

10.8 Remark. As before, the universal property of the p-th exterior power
implies the existence of a covariant functor∧p : (R-Mod) → (R-Mod)

M 7→
∧p M

M
α→M ′ 7→

∧pM
∧pα−→

∧pM ′

such that the equality ∧pα(m1 ∧ . . . ∧mp) = α(m1) ∧ . . . ∧ α(mp) holds for
all (m1 . . . ,mp) ∈Mp.

Indeed, for any homorphism α : M1 → M2 of R-modules, the composed
map τa2 ◦ (α × . . . × α) : Mp

1 → Mp
2 →

∧pM2 is alternating. The map
∧pα :

∧pM1 →
∧pM2 is defined as the unique R-linear map satisfying

∧pα ◦ τa1 = τa2 ◦ (α× . . .× α) given by the universal property.
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10.9 Proposition. Let M be a free R-module of rank n <∞. Then∧pM = {0} for all p > n.

Proof. Let {e1 . . . , en} be a basis of M . Then
⊗pM = spanR{ei1⊗. . .⊗eip :

1 ≤ i1, . . . , ip ≤ n}. By its construction as a quotient,∧pM = spanR{ei1 ∧ . . . ∧ eip : 1 ≤ i1, . . . , ip ≤ n}.

If p > n, then for any p-tuple (i1, . . . , ip), theres exists at least one pair of
indices 1 ≤ j, k ≤ p with j 6= k but ij = ik. Thus ei1 ∧ . . . ∧ eip = 0. �

10.10 Remark. Let p ∈ N>0. Recall that the group of permutations
(Σp, ◦) is given by the set Σp of bijective maps from {1, . . . , p} to itself,
together with the composition “◦” of maps. For a permutation σ ∈ Σp, the
composed map

Mp → Mp →
⊗pM

(m1, . . . ,mp) 7→ (mσ(1), . . . ,mσ(p)) 7→ mσ(1) ⊗ . . .⊗mσ(p)

is p-linear. Thus, by the universal property of the tensor product, it defines
a unique R-linear map

⊗pM →
⊗pM which shall also be denoted by σ, by

abuse of notation.

Obviously, for this map holds σ(Np(M)) ⊆ Np(M). By the universal prop-
erty of the quotient

∧pM =
⊗pM/Np(M) there exists a unique R-linear

map σ, which makes the following diagram commutative:⊗pM
σ //

π

��

⊗pM

π

��∧pM
σ
//
∧pM

It is customary to denote the unique homomorphism σ again by σ. By
construction, it is given on generating elements by

σ :
∧pM →

∧pM
m1 ∧ . . . ∧mp 7→ mσ(1) ∧ . . . ∧mσ(p)

10.11 Proposition. Let M be an R-module and let p ∈ N≥2. Then for
all a ∈

∧pM and all σ ∈ Σp holds

σ(a) = sign(σ) a.
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Proof. Since the map σ :
∧pM →

∧pM is R-linear, it is enough to prove
the formula on generating elements a = m1 ∧ . . . ∧ mp ∈

∧pM , where
m1, . . . ,mp ∈M .

Consider a representative t = m1 ⊗ . . . ⊗mp ∈
⊗pM , so that π(t) = a. It

is enough to show n := σ(t)− sign(σ)t ∈ Np(M). To do this, we write σ =
τ1 ◦ . . . ◦ τk, where τ1, . . . , τk are transpositions. Note that sign(σ) = (−1)k.

We will prove the claim by induction on k. For k = 1, let σ = τ be the
transposition interchanging the indices i and j. Without loss of generality
we may assume 1 ≤ i < j ≤ p. We compute

n = m1 ⊗ . . .⊗mj ⊗ . . .⊗mi ⊗ . . .⊗mp − (−1)m1 ⊗ . . .⊗mp

= m1 ⊗ . . .⊗ (mi +mj)⊗ . . .⊗ (mi +mj)⊗ . . .⊗mp

−m1 ⊗ . . .⊗mi ⊗ . . .⊗mi ⊗ . . .⊗mp

−m1 ⊗ . . .⊗mj ⊗ . . .⊗mj ⊗ . . .⊗mp

∈ Np(M).

Now let k ≥ 2, and assume that the formula holds up to k − 1. We have
σ = τ1 ◦ σ′, where σ′ = τ2 ◦ . . . ◦ τk. By assumption, we already have
σ′(t) − sign(σ′)t ∈ Np(M). Then clearly also n′ := τ1(σ′(t) − sign(σ′)t) ∈
Np(M). We compute

n′ = σ(t)− sign(σ′) τ1(t) ∈ Np(M), and
n1 := τ1(t)− sign(τ1)t ∈ Np(M) by step 1.

From this we obtain

σ(t)− sign(σ)(t) = σ(t)− sign(σ′)sign(τ1) t
= σ(t)− sign(σ′)(τ1(t)− n1)
= σ(t)− sign(σ′) τ1(t) + sign(σ′)n1

= n′ + sign(σ′)n1

∈ Np(M).

Thus σ(a)− sign(σ)a = π(σ(t)− sign(σ)(t)) = 0, as claimed. �

10.12 Lemma. Let M be a free R-module of rank n < ∞ with basis
{e1, . . . , en}. Then there exists a unique alternating p-linear map

det : Mn → R

called the determinant map, such that det(e1, . . . , en) = 1.
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Proof. By construction, the n-th alternating product is given as∧nM = spanR{ei1 ∧ . . . ∧ ein : 1 ≤ i1, . . . , in ≤ n}.

If {i1, . . . , in}${1, . . . , n}, we must have ij = ik for some j 6= k, so that
ei1 ∧ . . .∧ein = 0. We may hence assume that all n indices of the generating
elements are pairwise different, and all numbers 1, . . . , n occur as indices.
Reordering of the indices changes the element only by a sign ±1R, so we get∧nM = spanR{e1 ∧ . . . ∧ en} = R · e1 ∧ . . . ∧ en.

Consider the coordinate map

j :
∧nM → R

r · e1 ∧ . . . ∧ en 7→ r

By composition with the map τa : Mn →
∧nM , we define det := j ◦ τa.

Clearly, this is p-linear and alternating, and it satisfies det(e1, . . . , en) = 1.

To prove uniqueness, consider another alternating p-linear map d : Mn → R
with d(e1, . . . , en) = 1. By the universal property of the alternating product,
there is a unique R-linear map d̂ :

∧nM → R such that d = d̂ ◦ τa.
Let a ∈

∧nM . Then there exists an r ∈ R such that a = r · e1 ∧ . . . ∧ en.
We compute

d̂(a) = r · d̂(e1 ∧ . . . ∧ en) = r · d(e1, . . . , en)
= r · 1R
= r · det(e1, . . . , en) = r · j(e1 ∧ . . . ∧ en) = j(a)

Hence d̂ = j, and thus d = τa ◦ d̂ = τa ◦ j = det. �

10.13 Proposition. Let M be a free R-module of rank n <∞ with basis
{e1, . . . , en}. Let p ∈ N≥2. Then the p-th exterior power

∧pM is a free
R-module with basis (ei1 ∧ . . . ∧ eip)1≤i1<...<ip≤n. In particular, for its rank
holds

rank(
∧pM) =

(
n

p

)
.

Proof. Clearly, {ei1∧. . .∧eip}1≤i1,...,ip≤n is a generating system of
∧pM . By

proposition 10.11, we may assume that the indices are ordered as 1 ≤ i1 ≤
. . . ≤ ip ≤ n. We may furthermore confine ourselves to strict inequalities,
since otherwise ei1 ∧ . . . ∧ eip = 0.
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It remains to prove the R-linear independence of the generating family. This
needs some preparation.

We denote by I the set of all tuples I := (i1, . . . , ip) with 1 ≤ i1 < . . . <
ip ≤ n. For I ∈ I we define the projection map

πI : M → Rp

m =
∑n

i=1 riei 7→ (ri1 , . . . , rip)

which is clearly R-linear. Consider the unique p-linear determinant map
det : (Rp)p → R from lemma 10.12 with respect to the standard basis
{si}i=1,...,p of Rp. Its composition with the p-fold direct product of πI defines
an alternating p-linear map

ϕI : Mp → R
(m1, . . . ,mp) 7→ det(πI(m1), . . . , πI(mp))

The universal property of the alternating power gives a unique R-linear map
ϕ̂I :

∧pM → R such that for all generating elements m1 ∧ . . . ∧mp ∈
∧pM

holds ϕ̂(m1 ∧ . . . ∧mp) = det(πI(m1), . . . , πI(mp)) .

Consider another tuple J ∈ I. For J = I we compute

ϕ̂I(ej1 ∧ . . . ∧ ejp) = det(πI(ei1), . . . , πI(eip)) = det(s1, . . . , sp) = 1R.

However, if I 6= J there must exist some ` ∈ {1, . . . , p} with j` 6∈ {i1, . . . , ip}.
Hence πI(ej`) = 0R. Thus

ϕ̂I(ej1 ∧ . . . ∧ ejp) = det(πI(ej1), . . . , πI(ejp)) = 0R.

Consider now an R-linear combination a =
∑

(j1,...,jp)∈I r
j1,...,jpej1∧. . .∧ejp ∈∧pM with all rj1,...,jp ∈ R, and suppose a = 0. By the properties of the

R-linear map, we compute

0R = ϕ̂I(a) = ri1,...,ip

for all I = (i1, . . . , ip) ∈ I. �

10.14 Exercise. Let M be a vector space over a field K. Let m1, . . . ,mp ∈
M . Then m1 ∧ . . . ∧mp 6= 0 if and only if m1, . . . ,mp are K-linearly inde-
pendent.
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10.15 Notation. Let M be a module over a commutative ring (R,+, ·)
with multiplicative unit. We define∧

M :=
⊕
p∈N

∧pM

as an R-module, where
∧0M := R and

∧1M := M . By taking direct sums,
there is a canonical R-linear map

πa :
⊗

M →
∧
M.

10.16 Proposition. There exists a unique R-algebra structure (
∧
M,+, ·,∧),

with respect to which πa is a homomorphism of R-algebras.

Proof. By construction, πa is a homomorphism of R-modules. It is sur-
jective, so for any a, a′ ∈

∧
M , there exist elements t, t′ ∈

⊗
M , such that

πa(t) = a and πa(t′) = a′. We then define

a ∧ a′ := π(t⊗ t′).

By a straightforward computation, one verifies that this gives a well-defined
bilinear map, which is unique. �

10.17 Remark. In particular, proposition 10.16 implies that there is a
unique well-defined bilinear map

∧ :
∧pM ×

∧qM →
∧p+qM

(a1, a2) 7→ a1 ∧ a2

for all p, q ∈ N, such that for all t1 ∈
⊗pM and t2 ∈

⊗qM holds

πa(t1) ∧ πa(t2) = πa(t1 ⊗ t2).

10.18 Definition. Let M be a module over a commutative ring (R,+, ·)
with multiplicative unit. Then (M,+, ·,∧) is called the exterior algebra of
M .

10.19 Remark. a) The exterior algebra (M,+, ·,∧) is an associative al-
gebra with multiplicative unit 1R ∈

∧
M . In general, it is not commutative.

b) As before, there is a functor∧
: (R-Mod) → (R-Alg)

M 7→
∧
M

ϕ 7→ ∧ϕ
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10.20 Lemma. Let a1 ∈
∧pM and a2 ∈

∧qM with p, q ∈ N. Then the
following formula holds:

a2 ∧ a1 = (−1)pq a1 ∧ a2.

Proof. By linearity, it is enough to prove the claim on decomposable el-
ements. Let a1 = m1 ∧ . . . ∧ mp and a2 = mp+1 ∧ . . . ∧ mp+q, with
m1, . . . ,mp+q ∈ M . Let σ ∈ Σp+q be the permutation mapping the tu-
ple (1, . . . , p+ q) to (p+ 1, . . . , p+ q, 1, . . . , p). One easily verifies sign(σ) =
(−1)pq. Then

a2 ∧ a1 = mp+1 ∧ . . . ∧mp+q ∧m1 ∧ . . . ∧mp

= σ(m1 ∧ . . . ∧mp+q)
= sign(σ) ·m1 ∧ . . . ∧mp+q

= (−1)pq a1 ∧ a2

by proposition 10.11. �

10.21 Example. LetR = R andM := R3, with standard basis {e1, e2, e3}.
Then we find ∧

R3 ∼= R⊕ R3 ⊕ R3 ⊕ R.

For the element a := e2 + e1 ∧ e3 one computes a ∧ a = −2e1 ∧ e2 ∧ e3 6= 0.

10.22 Example. LetM be a freeR-module with a finite basis {e1, . . . , en}.
Let ϕ : M →M be an R-linear map, which is given with respect to the cho-
sen basis by a matrix

Aϕ =

 a11 . . . a1n
...

...
a1n . . . ann

 .

Let p ∈ N≥2. For an element ei1 ∧ . . .∧ eip with 1 ≤ i1 < . . . < ip ≤ n of the
induced basis of

∧pM we compute

∧pϕ(ei1 ∧ . . . ∧ eip) = ϕ(ei1) ∧ . . . ∧ ϕ(eip)
=

∑n
j1,...,jp=1 ai1,j1ej1 ∧ . . . ∧ aip,jpejp

=
∑

1≤j1<...<jn≤n
∑

σ∈Σp
sign(σ)ai1,j1 . . . aip,jpej1 ∧ . . . ∧ ejp

=
∑

1≤j1<...<jn≤n det(A
i1,...,ip
j1,...,jp

).
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In particular, for p = n = rang(M) we find on the generating element

∧nϕ :
∧nM →

∧nM
e1 ∧ . . . ∧ en 7→ det(A) · e1 ∧ . . . ∧ en

For example, let n = 2, and Aϕ =

(
a b
c d

)
. Then one computes

∧2ϕ(e1, e2) = ϕ(e1) ∧ ϕ(e2) = (ae1 + ce2) ∧ (be1 + de2)
= abe1 ∧ e1 + ade1 ∧ e2 + cbe2 ∧ e1 + cde2 ∧ e2

= (ad− bc)e1 ∧ e2.

10.23 Proposition. Let M be a free R-module of rank n < ∞. Then∧
M is a free R-module of rank

rank(
∧
M) = 2n.

Proof. By proposition 10.13, we have rank(
∧pM) =

(
n
p

)
for 0 ≤ p ≤ n,

and
∧pM = {0} for p > n by proposition 10.9. We thus compute

rank(
∧
M) =

n∑
i=0

(
n
p

)
=

n∑
i=0

(
n
p

)
1p1n−p = (1 + 1)n = 2n

using the binomial formula. �
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