Lineare Algebra 2 - Multilineare Algebra

Abgabetermin: Donnerstag, 19.12.2024, 10:00

Aufgabe 13: Beweise oder widerlege die folgenden Aussagen:

- (a) Ist V ein K-Vektorraum und sind $0 \neq x, y \in V$ mit $x \wedge y = y \wedge x$, dann gilt x = y.
- (b) In $\bigwedge^2 \mathbb{R}^2$ gilt die Gleichheit

$$(1,0)^{t} \wedge (2,2)^{t} + (0,2)^{t} \wedge (1,1)^{t} = 0.$$

Aufgabe 14: Es sei V ein K-Vektorraum und $r \ge 1$. Zeige, für den Unterraum V_r aus Definition 22.6 gilt:

$$V_r = Lin(x_1 \otimes \ldots \otimes x_r \mid x_i \in V \ \forall i = 1, \ldots, r; \ \exists \ 1 \leq i \leq r-1 : x_i = x_{i+1}).$$

Aufgabe 15: Es sei V ein endlich-dimensionaler K-Vektorraum.

(a) Zeige, für $f, g \in V^*$ ist die Abbildung

$$\alpha_{f,g}: V^2 \longrightarrow K: (x,y) \mapsto \det \left(egin{array}{cc} f(x) & f(y) \\ g(x) & g(y) \end{array}
ight)$$

bilinear und alternierend.

(b) Zeige, daß es genau eine lineare Abbildung

$$\alpha: V^* \wedge V^* \longrightarrow Alt(V^2,K)$$

mit

$$\alpha(f \wedge g) = \alpha_{f,g}$$

für $f,g \in V^*$ gibt.

Präsenzaufgabe 4: Es sei $E=(e_1,\ldots,e_4)$ die Standardbasis des \mathbb{R}^4 und es sei

$$x = (e_1 - e_4) \wedge (e_2 + e_3).$$

(a) Zeige, die folgende Abbildung ist linear:

$$f: \mathbb{R}^4 \longrightarrow \bigwedge^3 \mathbb{R}^4: y \mapsto y \wedge x.$$

(b) Bestimme die Matrixdarstellung $M_B^E(f)$ von f bezüglich der Basen E von \mathbb{R}^4 und $B=(e_1\wedge e_2\wedge e_3, e_1\wedge e_2\wedge e_4, e_1\wedge e_3\wedge e_4, e_2\wedge e_3\wedge e_4)$ von $\bigwedge^3\mathbb{R}^4$.