Thomas Markwig | Elementary Number Theory - ST 2016 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Termine:Proseminar: Mo 16:15-18:00, Raum S08Aktuelles:
Literatur:
Inhalt:Wir werden in diesem Proseminar einige einfache Fragen zu ganzen Zahlen stellen und versuchen diese zu beantworten. Die dazu notwendigen grundlegenden und weitgehend elementaren Methoden der Algebra und Zahlentheorie werden im Verlauf des Proseminars entwickelt. Einige allgemeine Hinweise:Für die meisten wird es das erste Mal sein, daß sie an einem Seminar teilnehmen. Das Seminar wird ganz wesentlich von der aktiven Beteiligung der Teilnehmer in Form von Fragen leben. Es ist nicht zu erwarten, daß man dem, was der Vortragende erzählt und anschreibt, stets folgen kann, und dazu darf man getrost stehen. Weder wirft eine Frage ein schlechtes Licht auf den, der fragt, noch bringt man den, der vorträgt, in Verlegenheit, falls er keine Antwort weiß. Mathematik erfordert Diskussion, und die Seminare sind die Orte, an denen man das Diskutieren, das Sich-Verständigen, über mathematische Inhalte lernen kann. Diese Gelegenheit sollte genutzt werden - und sie ist es ggf. wert, auf Inhalte zu verzichten. Für die einzelnen Vorträge stehen jeweils 90 Minuten zur Verfügung, die voll genutzt werden können, über die aber nicht hinausgegangen werden sollte. Zu den didaktischen Zielen des Seminars gehört es auch, eine sinnvolle Auswahl an Inhalten zu treffen und den darzubietenden Stoff zu straffen. Der Einsatz von Folien, kann Zeit einsparen, aber man sollte sich stets bewußt sein, daß es für die Zuhörer weit schwerer ist, einem schnellen Ritt über fertige Ergebnisse auf einer Folie zu folgen, als der meist weit langsameren Entwicklung selbiger Resultate an der Tafel. Von daher ist eher davon abzuraten, Beweise in allen Details auf Folien vorzubereiten, während es durchaus sinnvoll sein kann, grobe Raster von Beweisen auf diese Art zu präsentieren oder Ergebnisse, auf die mehrfach zurückgegriffen werden muß, so leicht verfügbar zu machen. Den Ideen und Phantasien für eine gute und ansprechende Präsentation sind sicher keine Grenzen gesetzt, und ich würde diesbezüglich gerne von den Teilnehmern lernen. Leistungsnachweis:Zum Erwerb der Leistungspunkte für das Proseminar muß ein Teilnehmer
Der Vortrag wird benotet und die Leistungspunkte werden vergeben, wenn die Note mindestens 4,0 lautet. Vorträge:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Universität Tübingen • Dept. of Mathematics • Section Algebra • CAS SINGULAR • Campus |