Thomas Markwig Kommutative Algebra
Kontakt
Forschungsinteressen
Lebenslauf
Veröffentlichungen
Lehre
Links

Termine:

Seminar: Di, 13:45-15:15, Rm 48-438

Aktuelles:

  1. Jeder Teilnehmer sollte in dem Buch von David Eisenbud die Kapitel A 2.2-3 und A 3.1-11 des Anhangs durchgearbeitet haben. Die dort eingeführten Begriffe gehören zur "Umgangssprache" des Seminars.
  2. Die Vortragenden sollten bemüht sein, die Ihnen zur Präsentation überlassenen Kapitel in einem 90-minütigen Vortrag darzustellen. Dabei wird es nicht möglich sein, alle Beweise bis in Detail zu präsentieren - für manche Beweise wird es sinnvoller sein nur die wesentliche Idee zu erläutern. Ferner sollte jeder bemüht sein, die entscheidenden Aussagen des eigenen Vortrags mit einem aussagekräftigen Beispiel zu untermauern.

Inhalt:

Das Seminar setzt die Vorlesung Commutative Algebra aus dem Wintersemester fort. Behandelt werden: graduierte Ringe und Moduln; reguläre Ringe; Grundzüge der homologischen Algebra; Cohen-Macaulay Ringe; Auslander-Buchsbaum Formel; Hilbertscher Syzygien-Satz; Fitting Ideale; Satz von Hilbert-Burch; Castelnuovo-Mumford Regularität; Dualität; Gorensteinsche Ringe; maximale Cohen-Macaulay Moduln.

Literatur:

Eisenbud: Commutative Algebra with a View towards Algebraic Geometry.
Gelfand, Manin: Methods of Homological Algebra.
Atiyah, MacDonald Introduction to Commutative Algebra.
Hilton, Stammbach: A Course in Homological Algebra.
Matsumura: Commutative Ring Theory.
Markwig: Some Remarks on the Graded Lemma of Nakayama, PS, PDF.

Hier kann die folgende Einteilung der Vorträge auch als PS-File. heruntergeladen werden.

Vorträge:

Vortragstitel Literatur  Vortragender Termin
  General Reading     
  0 Homological Algebra [Eisenbud, Kap. A 2.2 & A 3.1-11]  all  
  Regular Rings, Graded Rings and Modules     
  1 Regular Rings [Eisenbud, Sätze 10.5, 10.7, 10.10 & 10.14-15]  Max Pumperla 25.04.06
  2 Graded Modules and Rings [Eisenbud, Kap. 1.5, 1.9-10], [Atiyah-Macdonald, Prop. 10.7]  Stefania Barzan 02.05.06
  3 Graded Lemma of Nakayama [Markwig], [Atiyah-Macdonald, Thm. 11.22], [Atiyah-Macdonald, 10.8-9]  Shawki Al-Rashed 09.05.06
  4 Flatness and Tor [Eisenbud, Kap. 6.1-2, Prop. 6.1, Cor. 6.3, Thm. 6.8]  Matthias Herold 16.05.06
  Regular Sequences and the Koszul Complex     
  5 Koszul Complexes [Eisenbud, Kap. 17.1-4 pp. 423-440]  Thomas Markwig 23./30.05.06
  Depth, Codimension, and Cohen-Macaulay Rings     
  6 Depth [Eisenbud, Kap. 18.1 pp. 451-455]  Maximilian Boy 13.06.06
  7 Cohen-Macaulay Rings [Eisenbud, Kap. 18.2 pp. 455-460]  Andreas Glang 27.06.06
  8 Primness, Flatness and Depth [Eisenbud, Kap. 18.3-4 pp. 461-466]  ??? 04.07.06
  Homological Theory of Regular Local Rings     
  9 Projective Dimension [Eisenbud, Kap. 19.1-2 pp. 473-478, Thm. 20.1]  Clemens Thielen 11.07.06
  10 Auslander-Buchsbaum Formula [Eisenbud, Kap. 19.2-3 pp. 478 (C. 19.8)-483]  Achim Faßbender 18.07.06
  11 Factoriality of Regular Rings [Eisenbud, Kap. 19.3-4 pp. 483 (C. 19.14)-487]  Maryna Viazovska 25.07.06
Universität TübingenFB MathematikArbeitsbereich AlgebraCAS SINGULAR