|
|
Dates:
Lecture: Mo 11:45-13:15
and Mi 08:15-09:45, Rm 48-438
Exampleclass: Fr 13:45-15:15, Rm 48-438
Prüfungstermine:
30.08.2004 |
|
28.10.2004 |
|
29.10.2004 |
10:30 Eva-Maria Zimmermann |
|
09:00 Oleksandr Motsak |
|
13:00 Timo Neumann |
|
|
09:30 Oleksandr Manzyuk |
11:30 Eckehard Hollborn |
|
10:00 Oleksandr Iena |
12:00 Paul Tolksdorf |
|
10:30 Gergana Tosheva |
12:30 Gergana Tosheva |
|
11:00 Thorsten Horberth |
Assingments:
Post Script Dateien:
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
.
PDF Dateien:
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
.
Literature:
|
Gert-Martin Greuel, Gerhard Pfister, A Singular Introduction to
Commutative Algebra, Springer.
|
|
David Eisenbud, Commutative Algebra with a View towards Algebraic
Geometry, Springer.
|
|
Cox, Little, O'Shea, Ideals, Varieties and Algorithms., Springer.
|
|
Cox, Little, O'Shea, Using Algebraic Geometry., Springer.
|
Content:
Rings and ideals, (graduated) modules, monomial orderings, standard
bases, normal forms, Buchberger algorithm, Mora algorithm, operations
with ideals and modules (intersection, radical, quotient, saturation),
kernal of maps, free resolutions, sysygies, primary decompositon --
always the algorithmic aspect of computing the objects will be the
dominating question.
|