NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, November 17th, at 12:05 pm.

1. (a) Prove that 101101 is a Carmichael number.
(b) Prove that if the numbers $6 k+1,12 k+1$, and $18 k+1$ are all prime (for some $k \in \mathbb{N}$), then their product is a Carmichael number.
(c) Using part (b), find a Carmichael number which is greater than 101101.
2. Write your version of the Miller-Rabin primality test with the following:

- INPUT: a natural number $n \geq 3$.
- OUTPUT: composite or probably prime (with probability $\geq 1-\frac{1}{1000}$).

Hint: Please use not more than 10-15 lines. The first line of your algorithm can look as follows:

1. If $2 \mid n$, then stop. Return composite.
2. Let n be an odd number, $n-1=2^{s} d$ with d odd. We denote by L_{n} the set of all elements in $(\mathbb{Z} / n \mathbb{Z})^{*}$ that are not Miller-Rabin witnesses, that is,
$L_{n}:=\left\{a \in(\mathbb{Z} / n \mathbb{Z})^{*} \mid a^{d} \equiv 1(\bmod n)\right.$ or $a^{2^{r} d} \equiv-1(\bmod n)$ for some $\left.r \in\{0,1, \ldots, s-1\}\right\}$.
We already know that:

- $\# L_{n}=n-1$ if n is prime,
- $\# L_{n} \leq \phi(n) / 4$ if n is composite.

Find all elements of the set L_{n} for $n=91$.
4. Prove that for all $n \in \mathbb{N}$ the following inequalities hold:

$$
\frac{4^{n}}{2 \sqrt{n}} \leq\binom{ 2 n}{n}<4^{n}
$$

