NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, November 10th, at 12:05 pm.

1. Let

$$
\begin{equation*}
\left[b_{0} ; b_{1}, b_{2}, b_{3}, \ldots\right] \tag{1}
\end{equation*}
$$

be a continued fraction $\left(b_{0} \in \mathbb{Z}, b_{i} \in \mathbb{N}\right.$ for all $\left.i \geq 1\right)$.
We recursively define

$$
\begin{array}{lll}
P_{-1}=1, & P_{0}=b_{0}, & P_{k}=b_{k} P_{k-1}+P_{k-2} \\
Q_{-1}=0, & Q_{0}=1, & Q_{k}=b_{k} Q_{k-1}+Q_{k-2} \tag{2}
\end{array}
$$

(If $\left[b_{0} ; b_{1}, b_{2}, b_{3}, \ldots\right]=\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{m}\right]$ is finite, then $k \leq m$ in the recursion.)
Prove that for all $k \in \mathbb{N}$ (with $k \leq m$ in finite case) we have

$$
\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{k}\right]=\frac{P_{k}}{Q_{k}}
$$

where $\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{k}\right]$ is the k-th convergent for (1) and P_{k}, Q_{k} are defined by (2).
2. Prove that for $\left(P_{k}\right)$ and $\left(Q_{k}\right)$ defined above, the following identities hold:
(a) $P_{k} Q_{k-1}-Q_{k} P_{k-1}=(-1)^{k-1}$,
(b) $P_{k} Q_{k-2}-Q_{k} P_{k-2}=(-1)^{k} b_{k}$.
3. (a) Find $\frac{P_{k}}{Q_{k}}-\frac{P_{k-2}}{Q_{k-2}}$ and determine whether it is positive or negative (this may depend on k). Make a conclusion about monotonicity of subsequences of $\left(\frac{P_{k}}{Q_{k}}\right)$ with odd-/even-numbered terms.
(b) Now find $\frac{P_{k}}{Q_{k}}-\frac{P_{k-1}}{Q_{k-1}}$.
(c) Use (a) and (b) to show that if the original continued fraction is infinite, then the sequence $\left(\frac{P_{k}}{Q_{k}}\right)$ converges to a real number.
Remark. If we denote $x:=\lim _{k \rightarrow \infty} \frac{P_{k}}{Q_{k}}$, then we write $x=\left[b_{0} ; b_{1}, b_{2}, b_{3}, \ldots\right]$.
4. If $\frac{P_{k}}{Q_{k}}$, where $k \in \mathbb{N}$, is a convergent for x and if another rational number $\frac{p}{q} \neq \frac{P_{k}}{Q_{k}}$ has denominator $0<q \leq Q_{k}$, then $\left|x-\frac{P_{k}}{Q_{k}}\right|<\left|x-\frac{p}{q}\right|$. In other words, convergents are best rational approximations of real numbers. Prove this. You may use a more general fact - the theorem on the back of this page.
Remark 1. It follows, in particular, that $\left|x-\frac{P_{k}}{Q_{k}}\right|<\left|x-\frac{P_{k-1}}{Q_{k-1}}\right|$.
Remark 2. Note that not all of the best rational approximations are convergents.

Theorem. If $|q x-p|<\left|Q_{k} x-P_{k}\right|$, where $\frac{P_{k}}{Q_{k}}(k \in \mathbb{N})$ is the k-th convergent for $x \in \mathbb{R} \backslash \mathbb{Q}$, $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then $q>Q_{k}$.
Proof. We prove by contradiction. Assume that $|q x-p|<\left|Q_{k} x-P_{k}\right|$ and that $q \leq Q_{k}$. Notice that then $q<Q_{k+1}$.

Consider the linear system of equations:

$$
\begin{align*}
u P_{k}+v P_{k+1} & =p \\
u Q_{k}+v Q_{k+1} & =q \tag{3}
\end{align*}
$$

Its matrix has determinant $P_{k} Q_{k+1}-Q_{k} P_{k+1}=(-1)^{k+1}$ (see Problem 2(a)), which means that there is a unique solution

$$
(u, v)
$$

to the system (3), and this solution is a pair of integers.
Step 1. We first show that both $u \neq 0$ and $v \neq 0$.
If $u=0$, then $q=v Q_{k+1}$. So v is a positive integer, and therefore $q \geq Q_{k+1}$, which contradicts $q<Q_{k+1}$.
If $v=0$, then $p=u P_{k}, q=u Q_{k}$, and we have $|q x-p|=|u| \cdot\left|Q_{k} x-P_{k}\right| \geq\left|Q_{k} x-P_{k}\right|$, which contradicts the assumption.

Step 2. Now we show that u and v have opposite signs.
Consider the second equation in (3) and substitute the solution (u, v) in it, that is,

$$
q=u Q_{k}+v Q_{k+1} .
$$

If both u and v are positive integers, then $q>Q_{k+1}$. If both are negative, then $q<0$. However, we know that $0<q<Q_{k+1}$.

Step 3. Now we can finish the proof. Since $x-\frac{P_{k}}{Q_{k}}$ and $x-\frac{P_{k+1}}{Q_{k+1}}$ have opposite signs (because x always lies between two consequtive convergents - this follows from Problem 3, think why), we have that

$$
\begin{equation*}
u\left(Q_{k} x-P_{k}\right) \text { and } v\left(Q_{k+1} x-P_{k+1}\right) \text { have the same sign. } \tag{4}
\end{equation*}
$$

From (3) we find

$$
q x-p=x\left(u Q_{k}+v Q_{k+1}\right)-\left(u P_{k}+v P_{k+1}\right)=u\left(Q_{k} x-P_{k}\right)+v\left(Q_{k+1} x-P_{k+1}\right) .
$$

Using (4) we get now

$$
|q x-p|=\left|u\left(Q_{k} x-P_{k}\right)\right|+\left|v\left(Q_{k+1} x-P_{k+1}\right)\right|>|u| \cdot\left|Q_{k} x-P_{k}\right| \geq\left|Q_{k} x-P_{k}\right|,
$$

which contradicts the assumption.

