NUMBER THEORY AND CRYPTOGRAPHY

Due in class on Friday, November 10th, at 12:05 pm.

1. Let

$$[b_0; b_1, b_2, b_3, \ldots] \tag{1}$$

be a continued fraction $(b_0 \in \mathbb{Z}, b_i \in \mathbb{N} \text{ for all } i \geq 1)$. We recursively define

$$P_{-1} = 1, \quad P_0 = b_0, \quad P_k = b_k P_{k-1} + P_{k-2}$$

$$Q_{-1} = 0, \quad Q_0 = 1, \quad Q_k = b_k Q_{k-1} + Q_{k-2}$$
(2)

(If $[b_0; b_1, b_2, b_3, \ldots] = [b_0; b_1, b_2, \ldots, b_m]$ is finite, then $k \le m$ in the recursion.)

Prove that for all $k \in \mathbb{N}$ (with $k \leq m$ in finite case) we have

$$[b_0; b_1, b_2, \dots, b_k] = \frac{P_k}{Q_k}$$

where $[b_0; b_1, b_2, \ldots, b_k]$ is the k-th convergent for (1) and P_k, Q_k are defined by (2).

- **2.** Prove that for (P_k) and (Q_k) defined above, the following identities hold:
 - (a) $P_k Q_{k-1} Q_k P_{k-1} = (-1)^{k-1}$, (b) $P_k Q_{k-2} - Q_k P_{k-2} = (-1)^k b_k$.
- **3.** (a) Find $\frac{P_k}{Q_k} \frac{P_{k-2}}{Q_{k-2}}$ and determine whether it is positive or negative (this may depend on k). Make a conclusion about monotonicity of subsequences of $\left(\frac{P_k}{Q_k}\right)$ with odd-/even-numbered terms.
 - (b) Now find $\frac{P_k}{Q_k} \frac{P_{k-1}}{Q_{k-1}}$.

(c) Use (a) and (b) to show that if the original continued fraction is infinite, then the sequence $\left(\frac{P_k}{Q_k}\right)$ converges to a real number.

Remark. If we denote $x := \lim_{k \to \infty} \frac{P_k}{Q_k}$, then we write $x = [b_0; b_1, b_2, b_3, \ldots]$.

4. If $\frac{P_k}{Q_k}$, where $k \in \mathbb{N}$, is a convergent for x and if another rational number $\frac{p}{q} \neq \frac{P_k}{Q_k}$ has denominator $0 < q \le Q_k$, then $\left|x - \frac{P_k}{Q_k}\right| < \left|x - \frac{p}{q}\right|$. In other words, convergents are best rational approximations of real numbers. Prove this. You may use a more general fact – the theorem on the back of this page.

Remark 1. It follows, in particular, that $\left|x - \frac{P_k}{Q_k}\right| < \left|x - \frac{P_{k-1}}{Q_{k-1}}\right|$.

Remark 2. Note that not all of the best rational approximations are convergents.

Theorem. If $|qx-p| < |Q_kx-P_k|$, where $\frac{P_k}{Q_k}$ $(k \in \mathbb{N})$ is the k-th convergent for $x \in \mathbb{R} \setminus \mathbb{Q}$, $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then $q > Q_k$.

Proof. We prove by contradiction. Assume that $|qx - p| < |Q_kx - P_k|$ and that $q \leq Q_k$. Notice that then $q < Q_{k+1}$.

Consider the linear system of equations:

$$uP_k + vP_{k+1} = p$$

$$uQ_k + vQ_{k+1} = q$$
(3)

Its matrix has determinant $P_kQ_{k+1} - Q_kP_{k+1} = (-1)^{k+1}$ (see Problem 2(a)), which means that there is a unique solution

(u, v)

to the system (3), and this solution is a pair of integers.

Step 1. We first show that both $u \neq 0$ and $v \neq 0$. If u = 0, then $q = vQ_{k+1}$. So v is a positive integer, and therefore $q \ge Q_{k+1}$, which contradicts $q < Q_{k+1}$.

If v = 0, then $p = uP_k$, $q = uQ_k$, and we have $|qx - p| = |u| \cdot |Q_kx - P_k| \ge |Q_kx - P_k|$, which contradicts the assumption.

Step 2. Now we show that u and v have opposite signs. Consider the second equation in (3) and substitute the solution (u, v) in it, that is,

$$q = uQ_k + vQ_{k+1}$$

If both u and v are positive integers, then $q > Q_{k+1}$. If both are negative, then q < 0. However, we know that $0 < q < Q_{k+1}$.

Step 3. Now we can finish the proof. Since $x - \frac{P_k}{Q_k}$ and $x - \frac{P_{k+1}}{Q_{k+1}}$ have opposite signs (because x always lies between two consequtive convergents - this follows from Problem 3, think why), we have that

$$u(Q_k x - P_k)$$
 and $v(Q_{k+1} x - P_{k+1})$ have the same sign. (4)

From (3) we find

$$qx - p = x(uQ_k + vQ_{k+1}) - (uP_k + vP_{k+1}) = u(Q_kx - P_k) + v(Q_{k+1}x - P_{k+1})$$

Using (4) we get now

$$|qx - p| = |u(Q_kx - P_k)| + |v(Q_{k+1}x - P_{k+1})| > |u| \cdot |Q_kx - P_k| \ge |Q_kx - P_k|,$$

ich contradicts the assumption.

which contradicts the assumption.

1