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Abstract: We investigate Lyapunov exponents of Brownian motion in a
nonnegative Poissonian potential V . The Lyapunov exponent depends on the
potential V and our interest lies in the decay rate of the Lyapunov exponent
if the potential V tends to zero. In our model the random potential V is
generated by locating at each point of a Poisson point process with intensity
ν a bounded compactly supported nonnegative function W . We show that for
sequences of potentials Vn and intensities νn for which νn‖Wn‖1 ∼ D/n for
some constant D > 0 (n → ∞), the decay rates to zero of the quenched and
annealed Lyapunov exponents coincide and equal cn−1/2 where the constant
c is computed explicitly. Further we are able to estimate the quenched Lya-
punov exponent norm from above by the corresponding norm for the averaged
potential.

Introduction and Results

We consider Brownian motion in Rd, d ∈ N. Let Z be the canonical process on the space
C(R≥0,Rd) and Px be the Wiener measure starting from x ∈ Rd. By Ex we denote the
expectation operator belonging to Px, for P0 and E0 we simply write P , E. In the model we
consider, Z is moving in a random environment V which is formed by obstacles located at
points of a Poisson point process χ on Rd with constant intensity ν > 0, independent of Z.
Let (Ω,F ,P) be the probability space on which χ is defined and let E be the expectation
operator belonging to P. The obstacles are shaped by a measurable bounded compactly
supported function W : Rd → R≥0 which, in order to avoid trivialities, we assume not to
be almost everywhere equal to zero. The potential V : Rd ×Ω → [0,∞] is defined as

V (x, ω) := V (x) :=
∑
p∈[χ]

W (x− p)

where x ∈ Rd, ω ∈ Ω and [χ] is the support of the random measure χ. V will be called
the Poissonian potential generated by W and ν.

We define the Green function for Brownian motion in the environment η + V , where
η ≥ 0 is a constant, see e.g. [Szn98, (2.2.3)]: Let p(t, x, y), t > 0, x, y ∈ Rd be the transition
probabilities of Brownian motion. Define for ω ∈ Ω, t > 0, x, y ∈ Rd,

rη(t, x, y, ω) := p(t, x, y)Etx,y[exp{−
∫ t

0
η + V (Zs, ω)ds}].
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Here Etx,y is the Brownian bridge from x to y in time t. The Green function is defined as

gη : Rd × Rd ×Ω → [0,∞],

gη(x, y, ω) :=

∫ ∞
0

rη(s, x, y, ω)ds

and can be interpreted as density for the expected occupation times measure for Brownian
motion starting in x and being killed at rate η + V .

Introduce the hitting time H(y) := inf{s ≥ 0 : Zs ∈ B(y, 1)} where B(y, 1) is the open
ball of radius 1 centered at y and B(y, 1) its closure. Set

e(y, η + V ) := E[exp{−
∫ H(y)

0
η + V (Zs)ds}], a(y, η + V ) := − ln e(y, η + V ).

Here e−∞ = 0. Note that by independence
∫∞
0 V (Zs)ds = ∞ P ⊗ P-a.s.. For ω fixed

e(y, η + V ) is the probability that Brownian motion being killed at rate η + V survives
until it reaches B(y, 1). The quantity e(y, η+V ) can also be interpreted as the equilibrium
potential of B(y, 1) relative to −1

2∆+ η + V (see [Szn98, Proposition 2.3.8]).
The asymptotic behavior of the Green function gη(0, y, ω) for ‖y‖2 → ∞ has been

studied in [Szn94]. Sznitman shows exponential decay and also gives an alternative char-
acterization for the limiting object in terms of the quantity a. The following Theorem is
a version of [Szn98, Theorem 5.2.5], which omits the fact that the convergence also holds
uniformly for all directions.

Theorem 1 ([Szn98, Theorem 5.2.5]). There is a norm αη+V : Rd → R≥0, nonrandom,
such that P-a.s. for any y ∈ Rd,

lim
n→∞

− 1

n
ln gη(0, ny, ω) = lim

n→∞

1

n
a(ny, η + V ) = αη+V (y)

and the limits also hold in L1(P).

The limiting object αη+V is called the quenched Lyapunov exponent for Brownian mo-
tion in Poissonian potential. In this article we will consider Lyapunov exponents for
various potentials and it is therefore convenient to use the notation ’αη+V ’ in order to in-
dicate, which potential the Lyapunov exponent belongs to, although αη+V is a nonrandom
function.

We are also going to study annealed Lyapunov exponents: Sznitman shows in [Szn95]
exponential decay of the P-averaged Green function Egη(0, y, ω) for ‖y‖2 → ∞. Here
again, since we don’t need more details, we give a version of [Szn98, Theorem 5.3.4] which
only considers convergence on fixed directions, not mentioning that this convergence holds
uniformly on all directions:

Theorem 2 ([Szn98, Theorem 5.3.4]). There exists a norm βη+V on Rd, nonrandom,
such that for y ∈ Rd,

lim
n→∞

− 1

n
lnEgη(0, ny, ω) = lim

n→∞
− 1

n
lnEe(ny, η + V ) = βη+V (y).

Analogous results hold in the discrete setting of simple symmetric random walks on Zd
in random potentials. Zerner has constructed Lyapunov exponents in the quenched case
in [Zer98]. The annealed Lyapunov exponent is considered by Flury in [Flu07]. A recent
contribution is given in [Mou11]. For further results, models and quantities related to
Brownian motion moving in a Poissonian potential we refer to [Szn98, Chapter 5 and 7].
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The aim of this article is to study the behavior of annealed and quenched Lyapunov
exponents when the potential converges to zero. In the case of random walks in random
potentials this question has been investigated by Wang in [Wan02]. However, the results
there have been improved by Kosygina, Mountford and Zerner, see [KMZ11]. In the
present article we will establish analogous results to those of [KMZ11].

The behavior of Brownian motion in scaled Poissonian potentials ϕV with real valued
scaling function ϕ defined on R≥0 has been studied for various scaling functions ϕ (see
e.g. (7.1.10), (7.2.11) or (7.2.12) in [Szn98]): Our results complement results of Wüthrich
in [Wüt99] where increasing potentials are considered: Wüthrich shows for continuous
W and for the scaling ϕ(n) = n that n−1/2αn(η+V )(y) converges to the time-constant in
the corresponding continuous first-passage percolation model as n → ∞, uniformly in all
directions y ∈ Rd, ‖y‖2 = 1.

Potentials converging to zero have been studied for time dependent scalings for example
by Merkl and Wüthrich, see [MW01] and the references therein. For small potentials,
their result indicates that Brownian motion essentially only feels the averaged potential,
see the remarks on p.192 and equation (0.14) in [MW01]. Our results are in the same
spirit.

The present article also covers the case that the obstacles become rarefied. For the case
of hard obstacles, i.e. W =∞ on a nonpolar compact set and zero else, and for densities
decaying with time t see e.g. [vdBBdH05] or [Szn90] and the references therein. The ex-

act calculation of limt→∞− (ln t)2/d

t lnE[exp{−
∫ t
0 V (Zs)ds}] in [Szn93, (0.2)] in particular

illustrates the behavior of this limit under time independent scalings of the function W
as well as of the density ν. For time independent scalings of the density of hard obstacles
see [DV75, (1.2)].

In the following let Wn, n ∈ N be bounded measurable compactly supported functions
from Rd → R≥0 not almost everywhere equal to zero. For n ∈ N let νn > 0, ηn ≥ 0,
and let Vn be the Poissonian potential generated by Wn and νn. We want Vn to converge
to zero in a suitable way, in particular we want to cover the case when a potential V is
multiplied by a sequence of real numbers converging to zero, i.e. Vn = γnV with γn → 0
for n → ∞. It will turn out that L1(Rd) convergence of the functions Wn to zero will
be the notion of convergence which allows us to determine quantitative decay rates of the
Lyapunov exponents.

We will state explicit decay rates for the quenched and the annealed Lyapunov expo-
nents, moreover, these rates will coincide for the quenched and the annealed case. Under
this perspective the difference between the annealed and the quenched picture vanishes if
Wn is small enough. As far as we know, it is an open problem whether in high dimensions
for small W the quenched and the annealed Lyapunov exponents coincide (see [Szn98, p.
326]), for already solved aspects of this problem in the discrete setting we refer to the
references and comments given in [KMZ11] and in [Mou11].

In order to establish decay rates we will not need any regularity assumptions on the
obstacles Wn. The only restriction on the obstacles needed is boundedness of the L∞(Rd)
norms and of the supports:

Theorem 3. Assume supn∈N ‖nWn‖∞ < ∞, supn∈N diam supp(Wn) < ∞. Assume
there exists a constant D ≥ 0 such that

lim
n→∞

n(ηn + νn‖Wn‖1) = D.

Then for any y ∈ Rd,

lim
n→∞

√
nαηn+Vn(y) = lim

n→∞

√
nβηn+Vn(y) =

√
2D‖y‖2.
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Moreover, the convergences are uniform for y in any compact subset of Rd.

The proof of this theorem is divided into two main steps. In order to establish a
lower bound on lim infn→∞

√
nβηn+Vn(y) we will use techniques developed by Kosygina,

Mountford and Zerner in [KMZ11]. In order to establish an upper bound on lim supn→∞√
nαηn+Vn(y) we will estimate the quenched Lyapunov exponent. Sznitman’s proof of

Theorem 1 gives a bound on the quenched Lyapunov exponent, see [Szn94, Proposition
1.2]: For y ∈ Rd,

αη+V (y) ≤
√

2(η + λd + ‖W‖∞νωd(a+ 2)d)‖y‖2

where λd stands for the principal Dirichlet eigenvalue of −1
2∆ in B(0, 1), ωd is the volume

of B(0, 1), and a > 0 is such that W is supported in B(0, a). The bound, we will derive,
refines this result and in a heuristic sense shows that Brownian motion prefers moving in
a hilly random environment to moving in an averaged environment:

Theorem 4. For y ∈ Rd,

αη+V (y) ≤ αη+EV (y) =
√

2(η + ν‖W‖1)‖y‖2.

This bound corresponds to the bound given in the discrete setting by Zerner in [Zer98,
Proposition 4] applied to the special case that ’V is more variable than EV ’. Note that
this inequality may also be read as αη+V (y) ≤

√
2(η + E[V (0)])‖y‖2. The equality in

Theorem 4 is a well known calculation of the Lyapunov exponent for constant potentials.
The estimate of Sznitman as well as the estimate derived in this article can also be

interpreted as versions of the Combes-Thomas estimate for our concrete model which do
take into account the shape of the potential via ν‖W‖∞ and ν‖W‖1 respectively, see e.g.
[Sto01, Chapter 2.4] or [GK03] for an actual account to this subject. For localization
results concerning the present model we refer to [GHK05] and the references therein.

In order to prove Theorem 4, in a first step we find a suitable discretization of the
function W which enables us to apply Jensen’s inequality in the finite dimensional setting.
A more direct proof gets available if in addition W is assumed to be continuous. In this
case one can use directly the concavity of the functional F 7→ a(y, η + F ) on nonnegative
continuous functions on Rd in order to apply a general version of Jensen’s inequality
established by Perlman (see [Per74]) to the Pettis integrable random function V . This
leads to Theorem 4 without any discretization. However, in order to derive the result in
whole generality we are going to use the discretization technique.

Proof of the Upper Bound

The upper bound on lim supn→∞
√
nαηn+Vn in Theorem 3 is a direct consequence of The-

orem 4:
√
nαηn+Vn −

√
2D‖y‖2 ≤ (

√
2n(ηn + νn‖Wn‖1)−

√
2D)‖y‖2 which does converge

to zero for n→∞ uniformly for y in compact sets under the assumptions of Theorem 3.
Hence we start by proving Theorem 4.

Let L denote the Lebesgue measure on Rd or R depending on the context. The following
lemma examines continuity properties of a:

Lemma 5. Let y ∈ Rd, let fn, n ∈ N, f , g be nonnegative, locally integrable functions on
Rd with fn ≤ g and fn → f L -a.e. as n→∞. Then, as n→∞,

E[exp{−
∫ H(y)

0
fn(Zs)ds}1H(y)<∞]→ E[exp{−

∫ H(y)

0
f(Zs)ds}1H(y)<∞].
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Proof. We will show that P -a.s. whenever H(y) <∞,∫ H(y)

0
fn(Zs)ds→

∫ H(y)

0
f(Zs)ds as n→∞. (1)

Dominated convergence then gives the desired result.
Let N be a set with L (N ) = 0 and fn → f on N c. We examine the expectation of the

occupation times measure of N and apply Fubini’s theorem

E[

∫ H(y)

0
1N (Zs)ds] ≤ E[

∫ ∞
0

1N (Zs)ds] =

∫ ∞
0

E[1N (Zs)]ds

=

∫ ∞
0

∫
N
p(s, 0, z)dz ds = 0.

Thus P -a.s. the set {0 ≤ s ≤ H(y) : Zs ∈ N} has zero L -measure, which assures
convergence of the functions s 7→ fn(Zs) to s 7→ f(Zs) L -a.e.. Using fn ≤ g the dominated
convergence theorem implies that P -a.s. whenever H(y) < ∞ the convergence in (1)
holds.

This continuity property of a will be crucial for the approximation techniques we are
going to use in the proof of the following lemma.

Lemma 6. For y ∈ Rd,

Ea(y, η + V ) ≤ a(y, η + EV (0)).

Proof. First we are going to ’discretize’ the potential V by approximating W with a
suitable sequence of functions which are mostly like step functions.

Since the support of W is bounded, Lusin’s theorem assures the existence of a se-
quence (K(m))m∈N of compact sets K(m) ⊂ suppW such that W |K(m) is continuous and
L (suppW \ K(m)) ≤ 1/m. A finite union

⋃
i∈I Ki, I ⊂ N, |I| finite, of compact sets is

compact, and continuity of W on a finite number of closed sets Ki implies continuity of
W on the union

⋃
i∈I Ki of these sets. Thus without restriction we assume the sequence

(K(m))m∈N to be increasing, i.e. K(m′) ⊂ K(m) if m′ < m.
Set W (m) := W1K(m) and let V (m) be the Poissonian potential generated by W (m) and

ν. For x, y ∈ Rd with xi ≤ yi, 1 ≤ i ≤ d, we define the cube [x, y) as
∏d
i=1[xi, yi). For

k ∈ N let bxck := (bxick)1≤i≤d := (bxi2kc2−k)1≤i≤d, i.e. x rounded to the grid 2−kZd.
We denote the cube with side length 2−k and bxck in the bottom left corner by Qk(x) :=
[bxck, bxck + 2−k e), where e = (1, 1, . . . , 1) ∈ Rd. Define for m, k ∈ N the discretization

of W as the function W
(m)
k : Rd × Rd → R≥0

W
(m)
k (x, z) := sup

t∈Qk(z)
W (m)(x− t), V

(m)
k (x) :=

∑
p∈[χ]

W
(m)
k (x, p).

We are going to show that there is a sequence (k(m))m such that for all x, z ∈ Rd with
x− z /∈ A := suppW \⋃mK

(m),

W
(m)
k(m)(x, z)→W (x− z) as m→∞. (2)

Set k(1) := 1. Assume k(m − 1) is already defined. Uniform continuity of W |K(m)

implies that there is k(m) > k(m− 1) such that for s, t ∈ K(m) with |t− s| ≤ 2−k(m) one
has |W (m)(t)−W (s)| ≤ 1/m. Hence for all x, z ∈ Rd with x− z ∈ K(m)

|W (m)
k(m)(x, z)−W (x− z)| = | sup

t∈Qk(m)(z)
W (m)(x− t)−W (x− z)| ≤ 1

m
, (3)
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Figure 1: Here W (x) = (f1(−1/2,3/2])(−x) where f : R→ [0,∞) is continuous. A possible

approximation of W is W (m)(x) := (f1[−1/2+1/m,3/2])(−x), m ∈ N. In that case A =
{1/2}.

since |x − t − x + z| ≤ 2−k(m). In order to verify (2) one has to consider two cases: If
x − z ∈ ⋃mK

(m) there is m0 such that x − z ∈ K(m) for m ≥ m0. Hence (3) gives

convergence of W
(m)
k(m)(x, z) to W (x − z) as m → ∞. If x − z /∈ suppW closedness of

suppW assures the existence of k0 such that x − t /∈ suppW for all t ∈ Qk0(z), hence

for all m and for all k ≥ k0, W
(m)
k (x, z) = 0 and convergence also holds in this case. Set

Wm := W
(m)
k(m), Vm := V

(m)
k(m), k = k(m).

The approximation of W by (Wm)m assures convergence of Vm to V : In fact, let x ∈ Rd
and introduce the events M1(x) := {x /∈ [χ] +A} and M2 := {χ is locally finite}. Then
P[(M2)

c] = 0, and P[(M1(x))c] = P[χ(x − A) > 0] = 0 since L (A) = 0. By (2) on
M1(x) ∩M2 we have Vm(x) to V (x), hence

for all x ∈ Rd P-a.s. Vm(x)→ V (x) for m→∞. (4)

On the other hand local finiteness of χ implies P-a.s. L ([χ] +A) = 0. Hence

P-a.s. for L -a.e. x ∈ Rd Vm(x)→ V (x) for m→∞. (5)

That the quantity a is ’compatible’ with these convergences will be shown in the fol-
lowing: Choose x = 0, let B := {z + w : z, w ∈ Rd, z ∈ suppW, w or − w ∈ Q1(0)}, and
define V∞(·) :=

∑
p∈[χ] ‖W‖∞1B(· − p). Since Vm(0) ≤ V∞(0) by dominated convergence

(4) gives EVm(0)→ EV (0). Interpreting e(y, r), r ∈ R≥0, as the Laplace transform of the
hitting time H(y), continuity of Laplace transforms implies

a(y, η + EVm(0))→ a(y, η + EV (0)) for m→∞. (6)

Applying Lemma 5 and (5) gives P-a.s. convergence of a(y, η+Vm) to a(y, η+V ) for m→
∞. The fact that Vm ≤ V∞, P-integrability of a(y, η + V∞) (use [Szn98, (5.2.33)]) and
dominated convergence imply

Ea(y, η + Vm)→ Ea(y, η + V ) for m→∞. (7)

For N > 0 introduce the event N := {‖Zs‖∞ ≤ N for all s ≤ H(y)} and define

a(y, η + V,N ) := − lnE[exp{−
∫ H(y)
0 η + V (Zs)ds},N ]. The discrete properties of the

potential Vm enable us to deduce for N > 0

Ea(y, η + Vm,N ) ≤ a(y, η + EVm(0),N ). (8)

6



Indeed, since for all x ∈ Rd the function Wm(x, ·) is constant on the sets Qk(z), z ∈ 2−kZd,
we get

a(y, η + Vm,N ) = − lnE[exp{−
∫ H(y)

0
(η +

∑
p∈[χ]

Wm(Zs, p))ds},N ]

= − lnE[exp{−ηH(y)−
∑
z∈Z

#Qk(z)

∫ H(y)

0
Wm(Zs, z)ds},N ],

where #Qk(z) denotes the number of points of χ in Qk(z), and Z := {z ∈ 2−kZd :
‖z‖∞ ≤ N + sup{‖t‖∞ : t ∈ suppW} + 2−k}. Indeed, on N for all z /∈ Z the coefficient

wz :=
∫ H(y)
0 Wm(Zs, z)ds = 0. Define the mapping Λ : RZ≥0 → R,

Λ(u) := − lnE[exp{−ηH(y)−
∑
z∈Z

wzuz},N ].

Λ is concave: For u ∈ RZ and γ ≥ 0 set fγ(u) := exp{−γ(ηH(y) + w · u)}1N . Consider
γ ∈ (0, 1), u, v ∈ RZ , then Hölder’s inequality implies

E[fγ(u)f1−γ(v)] ≤ E[fγ(u)1/γ ]γE[f1−γ(v)1/(1−γ)]1−γ = E[f1(u)]γE[f1(v)]1−γ .

This together with the fact that Λ(γu+ (1− γ)v) = − lnE[fγ(u)f1−γ(v)] shows concavity
of Λ. Moreover wz does not depend on the underlying Poisson point process, therefore by
Jensen’s inequality

Ea(y, η + Vm,N ) = EΛ((#Qk(z))z∈Z) ≤ Λ((E#Qk(z))z∈Z)

= − lnE[exp{−ηH(y)−
∫ H(y)

0
E[
∑
z∈Z

#Qk(z)Wm(Zs, z)]ds},N ]

= − lnE[exp{−
∫ H(y)

0
η + EVm(Zs)ds},N ]

which proves (8).
We get Ea(y, η + Vm) ≤ Ea(y, η + Vm,N ) ≤ a(y, η + EVm(0),N ). Taking the limit

N →∞ the monotone convergence theorem implies Ea(y, η+Vm) ≤ a(y, η+EVm(0)). (6)
and (7) now show the statement.

The potential, we received by the discretization in the previous proof, appeared in a
slightly different way in literature: In fact, we also could have discretized W (m) by

W̃
(m)
k (x, z) := sup

s∈Qk(x), t∈Qk(z)
W (m)(s− t), Ṽ

(m)
k (x) :=

∑
p∈[χ]

W̃
(m)
k (x, p).

Then, since it is constant on cubes, Ṽ
(m)
k resembles the potential considered for Brownian

motion in random scenery, see [AC03].
Lemma 6 together with Theorem 1 proves Theorem 4. The well known fact that in the

case of constant potential η > 0, ν = 0 one has αη(y) =
√

2η‖y‖2 for y ∈ Rd shows the
equality in Theorem 4. For convenience we provide a proof for this formula:

We recall the following formula for the Green function of Brownian motion in constant
potential η > 0 (V = 0):

gη(x, y) =
2(2η)

d−2
2

σd(d− 2)!

∫ ∞
1

e−
√
2η‖y−x‖2t(t2 − 1)

d−3
2 dt (d ≥ 2),

gη(x, y) =
e−
√
2η|y−x|
√

2η
(d = 1),
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where σd is the surface area of the unit ball in Rd. See for example [CZ95, (2.61)] where
in the case of constant potentials it is demonstrated that the Green function defined in
a probabilistic way as done in this article can also be interpreted as the fundamental
solution to −1

2∆ + η. The formulas displayed above can be found in [DL90, Paragraph
II.8 Proposition 27] (d ≥ 2) where also uniqueness of the solution is stated and [Sta68,
(5.122)] (d = 1). (Choose g = 2E where E is the fundamental solution to −∆+ 2η.) The
asymptotic behavior of gη(x, y) is given by

‖y − x‖−
d−1
2

2 e−
√
2η‖y−x‖2gη(x, y)−1 → C for ‖x− y‖2 →∞, (9)

where C > 0. In fact, in the case d = 1 this is obvious, for d ≥ 2 set l := ‖y − x‖2,
k :=

√
2η and calculate for l ≥ 1,∫ ∞

1
e−klt(t2 − 1)

d−3
2 dt =

∫ ∞
0

e−k(v+l)(
v2

l2
+ 2

v

l
)
d−3
2
dv

l

= e−kll−
d−1
2

∫ ∞
0

e−kv(v(
v

l
+ 2))

d−3
2 dv,

where we used the transformation v = l(t − 1). Denote by Dl the latter integral. Then
(Dl)l is monotone decreasing in the case d > 3, is constant in the case d = 3 and monotone
increasing in the case d = 2. If d > 3, Dl can be estimated from above by c1 :=

∫∞
0 e−kv(v+

2)d−3dv < ∞ and be bounded from below by c2 :=
∫∞
0 e−kvv

d−3
2 dv > 0. For d = 2, c2 is

an upper bound and c1 a lower bound on Dl.
Hence by (9) the Lyapunov exponent for constant potential η > 0 is αη(y) =

√
2η‖y‖2.

Proof of the Lower Bound

Jensen’s inequality applied to a(ny, η+V ) in Theorem 1 and Theorem 2 shows that αη+V ≥
βη+V . Hence it suffices to establish the following lower bound for lim infn→∞

√
nβηn+Vn .

The proof of the following Proposition parallels the proof of the lower bound in [KMZ11].

Proposition 7. Assume w∞ := supn∈N ‖nWn‖∞, ξ := supn∈N diam supp(Wn) to be finite.
Let D ≥ 0 such that

lim inf
n→∞

n(ηn + νn‖Wn‖1) ≥ D. (10)

Then for C ≥ 0,

lim inf
n→∞

inf
y∈Rd, ‖y‖2=C

√
nβηn+Vn(y) ≥ C

√
2D.

Proof. Let n ∈ N. For C = 0 the statement is trivial, so assume C > 0. The Lya-
punov exponent is a norm on Rd, hence lim infn→∞ infy∈Rd, ‖y‖2=C

√
nβηn+Vn(y) equals

C lim infn→∞ infy∈Rd, ‖y‖2=1

√
nβηn+Vn(y) and we can restrict ourselves to the case C = 1.

In particular, this shows that the statement of Proposition 7 does hold uniformly for
C in compact intervalls. Furthermore, the underlying Poisson point process is trans-
lation invariant, thus a shift of χ does not modify the Lyapunov exponent. There-
fore, by appropriate translations of the functions Wn we suppose without restriction
B := B(0, ξ) ⊃ ⋃n suppWn.
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Let r ≥ 1, n ∈ N and y ∈ Rd with ‖y‖2 = 1. We calculate

Ee(ry, ηn + Vn) = E[exp{−ηnH(ry)}E[exp{−
∫ H(ry)

0
Vn(Zs)ds}]]

= E[exp{−ηnH(ry)}E[exp{−
∫
Rd

∫ H(ry)

0
Wn(Zs − x)dsχ(dx)}]]

= E[exp{−ηnH(ry)− νn
∫
Rd

(1− exp{−
∫ H(ry)

0
Wn(Zs − x)ds})dx}],

(11)

where we computed the Laplace transform for the random measure χ (see for instance
[Kal97, Lemma 10.2]).

Define Λ : R→ R by Λ(t) := 1− exp{−t}. Fix δ ∈ (0, 1) and choose t0 = t0(δ) > 0 such
that for 0 ≤ t ≤ t0,

Λ(t) ≥ δt. (12)

Let n ≥ n0 :=
⌈
(t0/(2w∞))−8

⌉
and r ≥ 1. For i ∈ N0 introduce the stopping times

Ti := inf{s ≥ 0 : Zs · y = in1/2} which are P -a.s. finite. For x ∈ Rd set ix := min{i ∈
N0 : x · y ≤ in1/2 + ξ}, for a ≤ b ∈ R≥0 abbreviate Jba(x) :=

∫ b
a Wn(Zs − x)ds, and

define mr :=
⌊
(r − 1)/n1/2

⌋
. We rewrite for x ∈ Rd the integral

∫ Tmr

0 Wn(Zs−x)ds as the
following sum and truncate:

∫ Tmr

0
Wn(Zs − x)ds =

mr∑
i=1

JTiTi−1
(x) ≥

mr∧bix+n1/8c∑
i=1∨ix

(JTiTi−1
(x) ∧ (w∞n

−1/4)). (13)

Then the term on the right-hand side of (13) is less than or equal to

(n1/8 + 1)w∞n
−1/4 ≤ 2w∞n

−1/8 ≤ t0. (14)

Observe that

H(ry) ≥ Tmr . (15)

Indeed B(ry, 1) ⊂ H := {x ∈ Rd : xy ≥ mrn
1/2}, hence inf{s ≥ 0 : Zs ∈ B(ry, 1)} ≥

inf{s ≥ 0 : Zs ∈ H}. Monotonicity of Λ and inequalities (12), (13) and (14) yield

Λ(J
H(ry)
0 (x)) ≥ δ

mr∧bix+n1/8c∑
i=1∨ix

(JTiTi−1
(x) ∧ (w∞n

−1/4)). (16)

Note that {x ∈ Rd : ix ≤ i and i ≤ ix + n1/8}
= {x ∈ Rd : x · y ≤ in1/2 + ξ and x · y > (i− n1/8 − 1)n1/2 + ξ}. Hence, by (16),∫

Rd

(1− exp{−
∫ H(ry)

0
Wn(Zs − x)ds})dx ≥

mr∑
i=1

Yi, (17)

where

Yi := δ

∫
Si
JTiTi−1

(x) ∧ (w∞n
−1/4)dx,

Si := {x ∈ Rd : −n5/8 + ξ < x · y − (i− 1)n1/2 ≤ n1/2 + ξ}.
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Figure 2: On the event An Z is restricted to stay in the strip {x ∈ Rd : −n5/8 + 2ξ <
x · y ≤ n1/2} until T1. In this situation Z can only feel obstacles located in S1.

The sequence (ηn(Ti − Ti−1) + νnYi)i is i.i.d. under P . In fact

δ−1Yi =

∫
Si

(

∫ Ti

Ti−1

Wn(Zs − x)ds) ∧ (w∞n
−1/4)dx

=

∫
{z:−n−5/8+ξ<z·y≤n1/2+ξ}

(

∫ Ti

Ti−1

Wn(Zs − ZTi−1 − z)ds) ∧ (w∞n
−1/4)dz

=

∫
{z:−n−5/8+ξ<z·y≤n1/2+ξ}

(

∫ τi

0
Wn(Zs+Ti−1 − ZTi−1 − z)ds) ∧ (w∞n

−1/4)dz,

where we used the transformation z = x−ZTi−1 , and τi := inf{s ≥ 0 : (Zs+Ti−1−ZTi−1)·y =

n1/2}. Further, Ti − Ti−1 = τi, thus ηn(Ti − Ti−1) + νnYi is a function of the process
(Zs+Ti−1 − ZTi−1)s≥0. An application of the strong Markov property, i.e. of the fact that
(Zs+Ti−1 −ZTi−1)s≥0 is independent of FTi−1 and distributed like (Zs)s≥0 (see for instance
[Kal97, Theorem 11.11]) proves the statement. Thus, (11), (15) and (17) imply

Ee(ry, ηn + Vn) ≤ E[exp{−
mr∑
i=1

(ηnτi − νnYi)}] = E[exp{−ηnT1 − νnY1}]mr . (18)

For Q ⊂ Rd measurable and T a stopping time we denote by LTQ the time spent by Z in

Q until time T , i.e. LTQ =
∫ T
0 1Q(Zs)ds. On the event

An := {Zs · y > −n5/8 + 2ξ for all s ≤ T1} ∩ {LT1B+x ≤ n3/4 for all x ∈ Rd}

we have

Y1 = δT1‖Wn‖1. (19)

Indeed, on An for s ≤ T1 we have Zs−suppWn ⊂ S1. Since Zs−suppWn = supp(Wn(Zs−
·)), this shows that on An for s ≤ T1 we have

∫
S1 Wn(Zs − x)dx = ‖Wn‖1. Hence, by

Fubini’s Theorem, on An we get
∫
S1

∫ T1
0 Wn(Zs−x)ds dx = T1‖Wn‖1. Since suppWn ⊂ B

and n‖Wn‖∞ < w∞, on An∫ T1

0
Wn(Zs − x)ds ≤ n−1w∞LT1B+x ≤ w∞n−1/4.

This shows Y1 = δ
∫
S1

∫ T1
0 Wn(Zs − x)ds dx on An, and (19) follows. Using the Laplace

transform for one-dimensional Brownian motion hitting times (see for instance [Dur05,
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(7.4.4)]), we get by (18) and (19) for n ≥ n0, r ≥ 1,

Ee(ry, ηn + Vn) ≤ (E[exp{−ηnT1 − δνn‖Wn‖1T1},An] + P [Acn])mr

≤ (exp{−
√

2nηn + 2nδνn‖Wn‖1}+ P [Acn])mr ,

which implies

−1

r
lnEe(ry, ηn + Vn) ≥ −mr

r
ln(exp{−

√
2nηn + 2nδνn‖Wn‖1}+ P [Acn]).

Therefore, taking the limit in r Theorem 2 shows for n ≥ n0,
√
nβηn+Vn(y) ≥ − ln(exp{−

√
2nηn + 2nδνn‖Wn‖1}+ P [Acn]). (20)

By rotational invariance of the Brownian law, P [Acn] does not depend on the direction of
y. In addition, the choice of n0 was independent of y. Therefore, for n ≥ n0, for all y ∈ Rd
with ‖y‖2 = 1, infy∈Rd, ‖y‖2=1

√
nβηn+Vn(y) is greater or equal the right-hand side of (20).

We take the limes inferior in n and use the fact that P [Acn]→ 0 for n→∞ (see (21)). By
assumption (10) we obtain

lim inf
n

inf
y∈Rd, ‖y‖2=1

√
nβηn+Vn(y) ≥ lim inf

n

√
2nηn + 2nδνn‖Wn‖1

≥ δ lim inf
n

√
2nηn + 2nνn‖Wn‖1 ≥ δ

√
2D.

Taking the supremum over δ ∈ (0, 1) shows the statement.
To complete the proof it remains to show

P [Acn]→ 0 for n→∞. (21)

First

P [Acn] ≤ P [∃s ≤ T1 : Zs · y ≤ −n5/8 + 2ξ] + P [∃x ∈ Rd : LT1B+x > n3/4].

The first term on the right-hand side is the probability that a one-dimensional Brownian
motion hits −n5/8 +2ξ before hitting n1/2. This probability equals n1/2/(n1/2 +n5/8−2ξ)
(see for example [Dur05, Theorem 7.5.3]) and therefore converges to zero as n goes to
infinity.

In order to examine the second term, we will reduce the problem to a one-dimensional
setting. For this purpose, notice that Zs ∈ B implies πy(Zs) ∈ πy(B) where πy is the
projection onto yR. Hence

LT1B+x =

∫ T1

0
1B+x(Zs)ds ≤

∫ T1

0
1πy(B+x)(πy(Zs))ds.

Since the term on the right side may be interpreted as the time spent by a one-dimensional
Brownian motion in a ball with radius ξ and center πy(x) before hitting n1/2, we assume
without restriction in the following Z = (Zs)s to be a one-dimensional Brownian motion,
the set B to be the interval [−ξ, ξ] and T1 to be the hitting time of n1/2. We then have to
show convergence to zero of P [∃x ∈ R : LT1B+x > n3/4] for n→∞. Note that for dimension

d = 1 the occupation times formula shows P -a.s. LT1B+x =
∫
B+x l

T1
z dz, where (ltz)t,z is the

local time process of one-dimensional Brownian motion (see for instance [RY91, Corollary
6.1.6] and the first remark thereafter).
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Using scaling relations for the local time process (see [RY91, Exercise 6.2.11]) we get

LT1B+x =

∫
B+x

lT1z dz
d
= n1/2

∫
B+x

l
H({1})
n−1/2z

dz

where H({1}) denotes the hitting time of the set {1}. The local time process is P -a.s.

bounded, i.e. supz∈R l
H({1})
z < ∞ P -a.s.. Indeed, P -a.s. z 7→ l

H({1})
z is a density for the

occupation measure µ : A 7→
∫ H({1})
0 1A(Zs)ds (use [RY91, Corollary 6.1.6]). Since P -a.s.

H({1}) is finite, the range of Zs up to time H({1}) is bounded, thus µ has P -a.s. compact
support suppµ. Furthermore, P -a.s. (z, t) 7→ ltz is jointly continuous (see [RY91, Theorem

6.1.7]), hence z 7→ l
H({1})
z is a continuous function with compact support and therefore

bounded. We get

P [∃x ∈ R : LT1B+x > n3/4] = P [∃x ∈ R :

∫
B+x

l
H({1})
n−1/2z

dz > n1/4]

≤ P [L (B)‖lH({1})
· ‖∞ > n1/4].

Finiteness of ‖lH({1})
· ‖∞ and continuity from above of P yield convergence to 0 of the

latter.
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